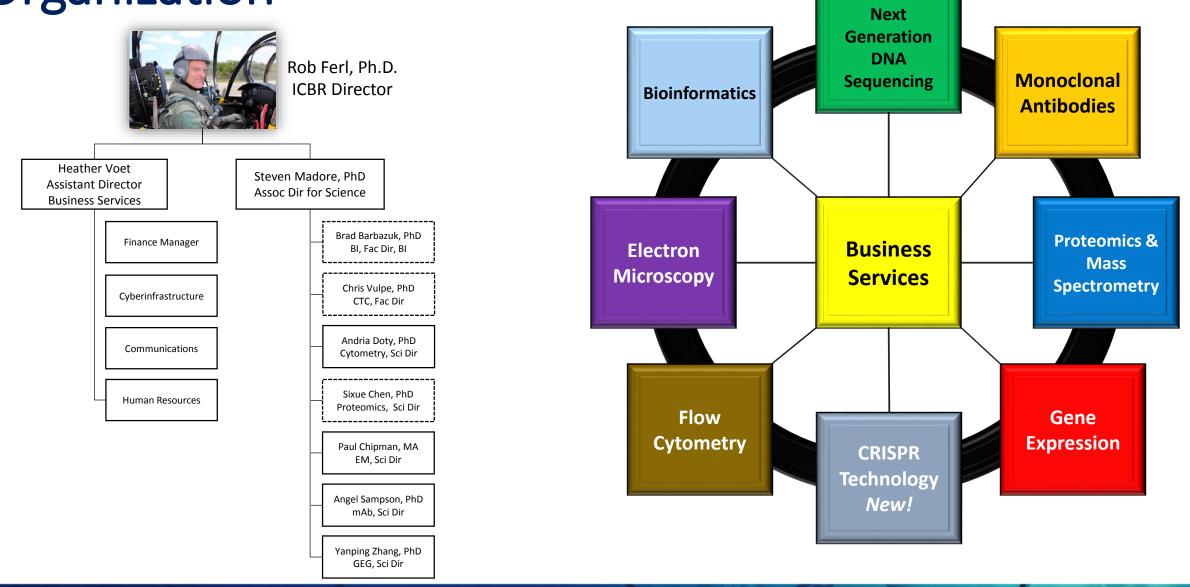
The ICBR- Recent efforts, upcoming initiatives and ongoing challenges

SENATE COUNCIL ON RESEARCH & SCHOLARSHIP MEETING April 17, 2018

Steven J. Madore, Ph.D. ICBR Associate Director for Science UFHCC Associate Director for Core Technologies

Talk Outline

- The ICBR an introduction and historical overview
- Recent efforts
- Ongoing challenges
- New initiatives


Introduction

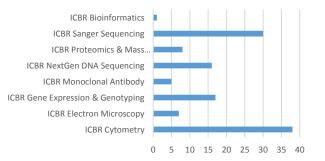
- Founded in 1987 by the Florida Legislature as a research support organization to develop biotechnology resources to support the UF research community.
- State of Florida and UF provide funding to support administration, scientific directors and technical personnel.
- Main facility located in Cancer & Genetics Research Complex with satellite locations in MacKnight Brain Institute and Microbiology and Cell Sciences.
- Mission is to enable, strengthen and energize all aspects of molecular life science research by providing scientific and technical instrumentation and expertise.
- Long term aim is to jump start research for technology transfer and accelerate molecular biology research success from concept through to data that advances science.
- Organized under the Vice President for Research, Dr. David Norton and led by Dr. Robert Ferl.

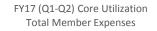
Organization

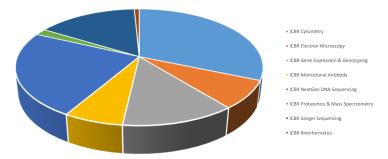
Talk Outline

The ICBR – an introduction and historical overview

- Recent efforts
- Ongoing challenges
- New initiatives




Recent Efforts


Launch of iLAB

UF Interdisciplinary Center <i>for</i> Biotechnology Research						Search ICBR Web		
		_				Login ir CrossLab	(iLab)	
About ICBR ▼	Cores 🔻 Ser	vices 🔻	Become a Customer	FA	Q Con	tact Us		
Home Services Service Fees	\rangle							
Service Fees	Service I	Fees						
Self Service	Customers will be available on our F		all requested services perfor	rmed, regai	dless of their	final outcome. Me	ore information is	
Service Request Forms			CrossLab (iLab) and create a	submissio	n ID. Don't ha	ve a CrossLab (il	Lab) account?	
Instrument Gallery	Request one here							
Analytical Software	Show 50 V entries						Q	
Proposal Support	CoreName 🖨	ServiceOrE	quipmentName	\$ UF \$	NP	¢ co	MMERCIAL \$	
Business Services	ICBR Cytometry	100 micron	sorting chip	\$39	\$39	\$39)	
	ICBR Cytometry	12x75mm fil	ter cap tubes	\$25	\$25	\$25	5	
	ICBR Cytometry	Advanced C (per hour)	ytometer, Sample Analysis	\$80	\$120	\$16	60	
	ICBR Cytometry	Advanced C hour)	ytometer, Self-Service (per	\$48	\$120	\$16	60	
	ICBR Cytometry	Basic Cyton hour)	neter, Sample Analysis (per	\$55	\$83	\$11	10	
	ICBR Cytometry	Basic Cyton	neter, Self-Service (per hour)	\$33	\$83	\$11	10	
	ICBR Cytometry	Biosorter La	rge Particle Sorter (per hour) \$5	\$10	\$10	00	
	ICBR Cytometry	Canto-II, Sa	mple Analysis (per hour)	\$60	\$90	\$12	20	

FY17 (Q1-Q2) Core Utilization All UFHCC Members

Recent Efforts

Branding

Recent Efforts

Gauging Customer Satisfaction

UF ICBR: CUSTOMER SERVICE SURVEY REPORT

Overall ICBR Customer Satisfaction

	Frequency	% (N=75)
1 ("very dissatisfied")	1	1.3%
2	4	5.3%
3	9	12.0%
4	25	33.3%
5 ("very satisfied")	35	46.7%
Not sure	1	1.3%

What did the ICBR do really well?

Angel Sampson was great about getting information to us at the start
Came up with good suggestions and helped interpret the results
Communicate
Communication (especially David Moraga) - Accommodate tight schedule.
Communication when working through a project.
Customer service, quality of training and data
Easy requesting, timing
EM core
Expert advice on SEM use
Fast service, constant updates, quality

What could the ICBR do better?

Better maintenance of instruments
Bring back Sanger Sequencing
Communication regarding technical issues
Data analysis education
Easier access/location to the college of medicine

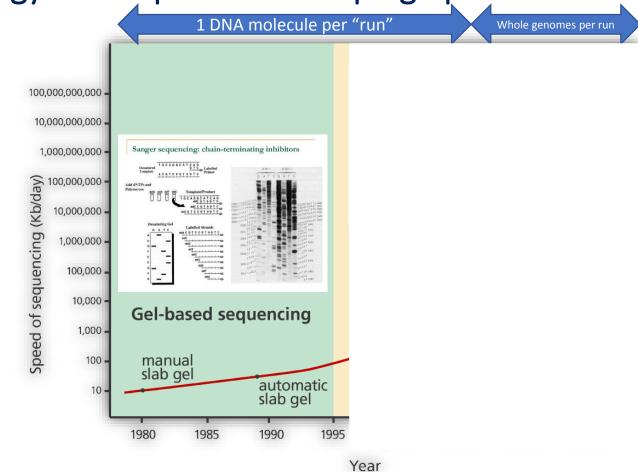
UF|ICBR

Fewer password requirements to access scheduling calendars

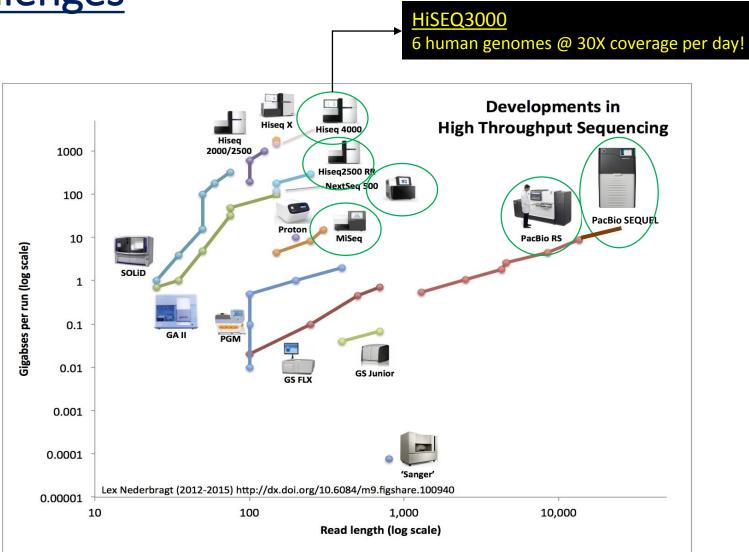
<u>Recent Efforts</u> – Faculty Recruiting

- ICBR coordinates with hiring departments for faculty recruit tours
- Highlights value of ICBR services, existing technologies/instrumentation
- Establishes valuable connections with on campus experts
- Facilitates acquisition of new instrumentation as part of start up package that can be used by all UF research
 - Important to eliminating purchase of expensive equipment in start up packages
 - Discussions with ICBR and Gavin Naylor, recent hire in Museum of Natural History, resulted in acquisition of state of the art PacBio DNA sequencer SEQUEL
 - ICBR led instrument purchase process

• Located in ICBR, staffed by ICBR experts, covered by service contract & accessible to UF research community

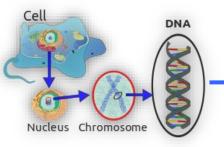

Talk Outline

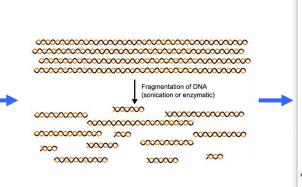
- The ICBR an introduction and historical overview
- Recent efforts
- Ongoing challenges
- New initiatives

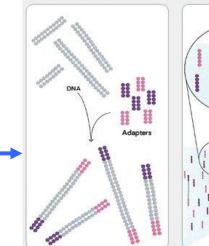


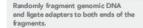
Ongoing Challenges

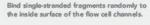
Rapid Technology Developments – Keeping up with the Jones'




Ongoing Challenges



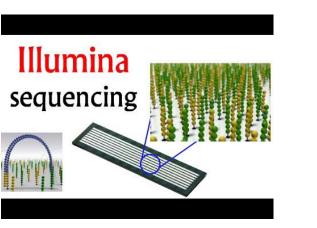


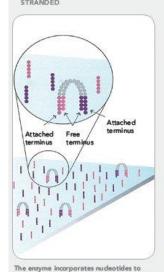

Illumina

Adapter

DNA fragment

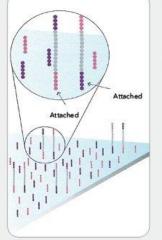
Dense lawn


of primers


Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.

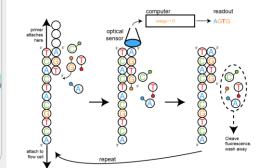
4. FRAGMENTS BECOME DOUBLE STRANDED 5. DENATURE THE DOUBLE-STRANDED MOLECULES

Adapter


6. COMPLETE AMPLIFICATION

build double-stranded bridges on the solid-

phase substrate.

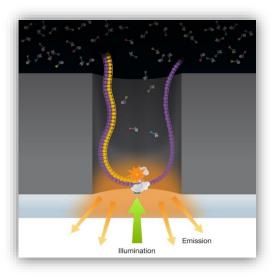


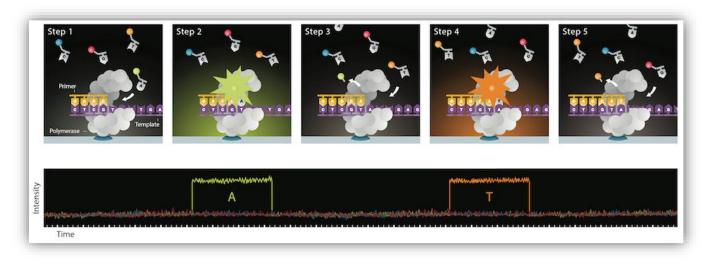
Denaturation leaves single-stranded

templates anchored to the substrate.

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

Clusters

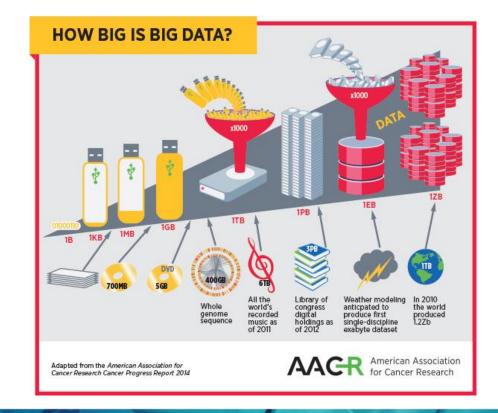

UF|ICBR



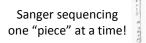
3. BRIDGE AMPLIFICATION

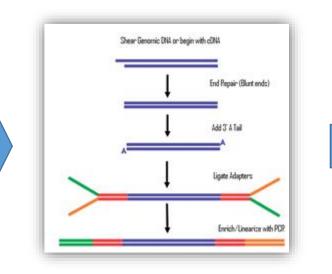
0.0

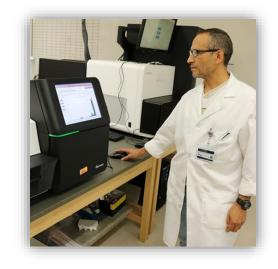
PacBio – Single Molecule Real Time (SMRT) Sequencing



Ongoing Challenges


- Modern DNA sequencers generate very large data sets
 - ICBR average sequencing read results in 1 Tb of data
 - Additional large files created from downstream data analysis
- Bottleneck is moving and storing big data files
- Data archiving
 - Who's responsible???
 - What format?
 - How long?
 - Who pays the bill?
 - How to ensure safe storage?
- What are institutional policies??




Ongoing Challenges

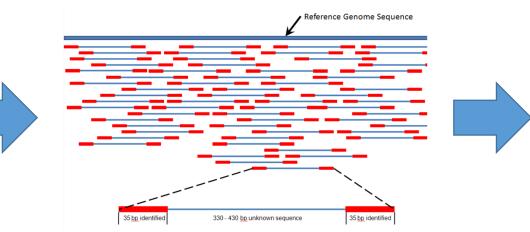
Big Data - Sequencing Requires Shredding Chromosomal DNA...

@FCC22K1ACXX:5:1101:1570:1927#/1

GA COLLEAR MARKET THE TITLE OF THE STATE OF

NICCTICICATITGCTTGCTTGCTGCTGACAGACACATAGAGAACAGGGGCCAAGCTATAGCTTTGCTTTTGTCCTTTGTTTTTAAACGCCACCTGATA +

NAGAGICICCCCCCCCCCCCCTCIGGACAICCAGCIGCCAATIAICTCAGAIGACTICAAAIICCAGGIGIGGAGGAAGAIGTICCGGGCICIGAIGCC +


BSFaccodggggghhhhhhh' "efghfhhffhgggfgfghfhhhhffgfghfhhhggggggeeeee]b_bcc'accocbbbddaccaaabbcY'bc §FCC22XLACXX:5:110:1:869:1924// NITCRACTGAACAACTITCATGCTGTGGAGAGGAGGAGGAGAGATGATGATAAAACTTCGAGAAAACATGCTGGACAAGGGATTAAAGTCATCTC

HICIGACIIRGARCAIIICAIGCIGGIICGGAGAGAGAGAGAGAGAGAIGAGIICAAAAAGCIICGAGAAAACAIGCIGGACAAGGGGAIIAAAGICAICIC +

This is the easy part!

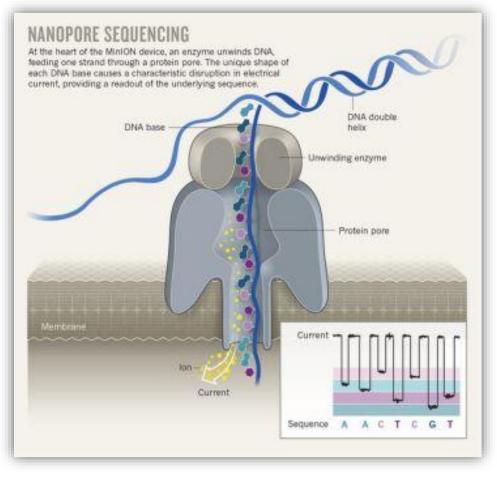
– and then Putting the "ePieces" Back Together Again!

This is harder and requires substantial computing power!

CTGGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGGATAGAATGACGGTGCCCGTGTCTGCTTGCCTCGAAGCA ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAGACATGCGTGGTAGTCA TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATTCCCAAAGGTCGCAAGA CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGGGAACCGGC CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACTCTTCTATG ATCCAAGCGCCCGCTAATTCTGTTCTGTTCATATGTTCATACCAATACTCACATCACATTAGATCAAAGGATCCCCG AGCCCAGTCGCAAGGGTCTGCTGCTGCTGTCGACGCCTCATGTTACTCCTGGAATCTACCTGCCC AGACAACCTAACTAATAGTCTCTAACGGGGGAATTACCTTTACCAGTCTCATGCCTCCAATATATCTGCA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCCGGGTCCCAGCT GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGAATATTGTGC TCTCGTCCGTAACGATCTGGGGGGGCAAAAACCGAATATCCGTATTCTCGTCCTACGGGTCCACAATGAGAAAGTCC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCTAAGAATCAC ACGGGTTCGCTACAGATGAACTGAACTTATACACGGACAACTCATCGCCCATTTGGGCGTGGGCACCGCAGATCA AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCATCAAACTTCAATAAAT CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTACAACCC AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGGGGCTC1 TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTCAGGAGTAATAGCGACA AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTTGCAAGAACCAACTGGG CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAAACCGACGTC CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACATCAAAGACTACTGGGCG ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACACGTGCCATGGGTTGCGT AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACAGAATTGCTCTTC1 AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGTCCCTC CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATCGCTTATGAATCGCATG ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGGGAGGAAATGCAGAGAA CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAAATTTCGTGCGCCTCTC CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCATACTAGGTCCCGGAGC1 AAAGACTACCCTATGGATTCCTTGGAGCGGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATC GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGGTCCTGTTAG GCCTGCTCCTGTTCCGGGTACCATAGATAGACTGAGATTGCGTCAAAAAATTGCGGCGAAAATAGAG TGTAGAAATACCAGACTGGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTAAACATCAACAAATGCGTCTAC CGAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGATGTCTTCATAAGATTATACTTG CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG

Compiled from raw data

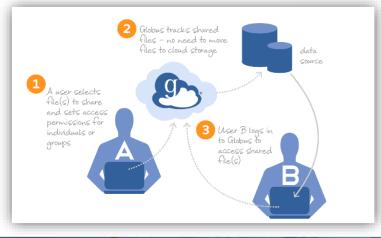
UF|ICBR



Electronic raw data

What's next in NGS?

Talk Outline


- The ICBR an introduction and historical overview
- Recent efforts
- Ongoing challenges
- New initiatives

<u>New Initiatives</u> - Streamlining Big Data Delivery with GLOBUS

- Globus is a leading provider of secure, reliable research data management services
- Users can move, share, and publish data via a single interface
- Transfer files efficient and secure data movement from kilobytes to petabytes, between users within an institution or across an ocean
- Sharing files manages authentication and access of data between colleagues

<u>New Initiatives</u> - UFHCC and ICBR Partnerships

ICBR AD for Science is UFHCC AD for Core Technologies

Responsibilities

- Serve on UFHCC Executive Committee
- Regularly attend and participate in program meetings
- Charter and monitor activities and efficacy of Scientific Advisory Groups
- Establish metrics for assessing performance, quality standards, impact and ROI
- Monitor trends in utilization and conduct surveys to gather feedback
- Identify gaps in technology portfolio and develop new shared resources

UFHCC Investments in ICBR

Illumina HiSEQ3000 (Next Generation Sequencing Core)

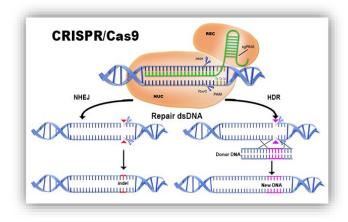
Becton Dickinson FORTESSA Flow Instrument (ICBR Cytometry)

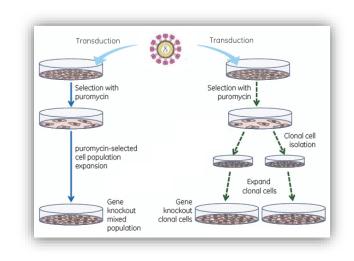
Upgrade of ARIA II Sorter (ICBR Cytometry)

Malvern NS300 Nanosight Microparticle Analyzer (ICBR Cytometry)

<u>New Initiatives</u> – The NCI Cancer Center Support Grant

NCI-designated Cancer Centers are characterized by excellence in scientific leadership, resources, and the depth and breadth of research in basic, clinical, and population science.


Each play a vital role in advancing towards the goal of reducing morbidity and mortality from cancer



<u>New Initiatives</u> - ICBR CRISPR Technology Core

Co-managed by UFHCC and ICBR

- Led by Dr. Chris Vulpe, UFHCC Faculty Director
- <u>Clustered Regularly Interspaced Short Palindromic Repeats</u>
 - Hallmark of a adaptive anti-phage immune system in bacteria first characterized in 1993 by Francisco Mojica, University of Alicante, Spain
 - Simple, sequence-specific, enzymatic process modified to easily work in mammalian cells
- Gene editing in mammalian cells
 - Generation of cell pools or clonal cell lines with targeted allele editing
- CRISPR-based whole genome and targeted screening

Thank you!

