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Course|New for request 12963

Info

Request: GEO 4XXX Spatial Econometrics and Modeling (co-listed with grad)
Description of request: The request is to create a new course that will be offered by the Geography
Department. It will be co-listed with a graduate level course.
Submitter: Casey Griffith cgriffith@aa.ufl.edu
Created: 1/24/2019 10:55:57 AM
Form version: 5

Responses
Recommended Prefix GEO
Course Level 4
Number XXX
Category of Instruction Advanced
Lab Code None
Course Title Spatial Econometrics and Modeling
Transcript Title Spatial Econometrics
Degree Type Baccalaureate

Delivery Method(s) On-Campus
Co-Listing Yes
Co-Listing Explanation Expectations for graduate and undergraduate students will be different as
follows:

Additional Assignments and Examinations
Graduate students prepare and present a research paper; undergraduates do not.

More Rigorous Assignments and Examinations
Graduates will have 2 days to finish take-home tests; undergraduates, 4 days.

More Demanding Performance Criteria
Graduates will have a more difficult grading scale than undergraduates (see syllabi)

Effective Term Fall
Effective Year 2018
Rotating Topic? No
Repeatable Credit? No

Amount of Credit 3

S/U Only? No
Contact Type Regularly Scheduled
Weekly Contact Hours 3
Course Description Introduces students to the detection of spatial autocorrelation in data sets and
discusses the implementation of a variety of spatial regression models. Provides experience in
estimation procedures based on ordinary least squares, "maximum likelihood" and Bayesian
probability theory.
Prerequisites
GEO 4167, Intermediate Quantitative Analysis, or equivalent

Co-requisites none
Rationale and Placement in Curriculum Spatial econometrics and modeling are increasingly
important in geography, economics, sociology, epidemiology, ecology, geology, and other disciplines.
There is not a course that teaches how to implement the appropriate spatial methods. There are
econometrics courses and spatial statistics courses, but none that combine the two subjects. It fits into



the curriculum by adding an advanced methods course to geography focused explicitly on spatial
regression. It adds an advanced elective in statistical methods for cognate disciplines.
Course Objectives Students who successfully complete this course will be able to:
1) assess the presence of spatial autocorrelation in data sets;
2) mathematically represent the nature of spatial relations in data sets;
3) conduct a spatial analysis by implementing a variety of spatial regression techniques;
4) use MATLAB and GeoDa software.

The achievement of these objectives will be measured by both homework assignments and testing.
Course Textbook(s) and/or Other Assigned Reading
Course text:

LeSage, J. P. and Pace, R. K. 2009. Introduction to Spatial Econometrics. Boca Raton, FL: CRC
Press.

Background Materials:

Anselin, L. 1988. Spatial Econometrics Methods and Models. The Netherlands: Kluwer Academic
Publishers.

Anselin, L. 2003. Spatial externalities, spatial multipliers, and spatial econometrics. International
Regional Science Review 26(2): 153-166.

Anselin, L. 2006. Spatial Regression. Unpublished manuscript. Urbana Illinois: Spatial Analysis
Laboratory.

Anselin, L. 2005. Exploring Spatial Data with GeoDa: A Workbook. Center for Spatially Integrated
Social Science, Spatial Analysis Laboratory (hhtp://sal.uiuc.edu)

Binmore, K.G. 1982. Mathematical Analysis: A Straightforward Approach (2nd edition). Cambridge:
Cambridge University Press.

Greene, W.H. 2000. Econometric Analysis, 4th ed. New Jersey: Prentice Hall

Griffith, D.A., Amrhein, C.G. 1991. Statistical Analysis for Geographers. Englewood Cliffs, New Jersey:
Prentice Hall.

Hoel, P.G., Port, S.C., and Stone, C.J. 1971. Introduction to Probability Theory. (Vol 1) Boston:
Houghton Mifflin Company.

Hoel, P.G., Port, S.C., and Stone, C.J. 1971. Introduction to Statistical Theory. (Vol 2) Boston,
Houghton Mifflin Company.

LeSage, J.P. 1997. Bayesian estimation of spatial autoregressive models. International Regional
Science Review 20(1&2): 113-129.

LeSage, J.P. 1998. Spatial Econometrics. Unpublished manuscript.

LeSage, J.P. Bayesian estimation of limited dependent variable spatial autoregressive models.
Geographical Analysis 32(1): 19-35.

LeSage, J.P. 2006. Application of Bayesian Methods to Spatial Econometrics. Unpublished
manuscript.

Miller, R.E. 2000. Optimization: Foundations and applications. New York: John Wiley & Sons, Inc.

Smith, T.E. and LeSage, J.P. 2004. A Bayesian probit model with spatial dependencies, in Spatial and
Spatiotemporal Econometrics. Lesage, J.P. and Pace, R.K. (eds). Amsterdam: Elsevier.

Zellner, A. 1971. An Introduction to Bayesian Inference in Econometrics. New York: John Wiley &
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Weekly Schedule of Topics Week 1 Introduction

Week 2 Data Arrays and Matrix Algebra

Week 3 (Labor Day Holiday contingent on date of class)

Week 4 Principles of Probability (Inference, Bias) Intro to GeoDa

Week 5 Data Generating Processes; the Regression Model

Week 6 Spatial Representation, Data Types

Week 7 Spatial Regression, Preliminaries GeoDa applications

Week 8 The “Spatial Error and Lag Models” MATLAB Library

Week 9 The “Sac Model,” the “Durbin Model”

Week 10 Grad Student Presentations: Objectives and Data

Week 11 Model Selection and goodness-of-fit

Week 12 Bayesian probability and inference

Week 13 Bayesian regression

Week 14 Late November: Thanksgiving Break. An exercise via CANVAS if necessary,
contingent on class date

Week 15 Limited dependent variables in spatial context

Week 16 Grad Student Presentations: Analysis and Findings

Links and Policies Class Attendance and Make-Up Policy
Class attendance is expected. Excused absences are consistent with university policies in the
undergraduate catalog (https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx) and
require appropriate documentation.
Makeups for the Mid-term and Final will be provided for students who miss either exam due to
extreme, documented circumstances. Late homework assignments will also be accepted under similar
circumstances. Students should arrange with the instructor for makeup material, and the student will
receive one week to prepare for any makeup assignment, if circumstances allow it.
Students Requiring Accommodations
Students with disabilities requesting accommodations should first register with the Disability Resource
Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once
registered, students will receive an accommodation letter which must be presented to the instructor
when requesting accommodation. Students with disabilities should follow this procedure as early as
possible in the semester.
Course Evaluation
Students are expected to provide feedback on the quality of instruction in this course by completing
online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or
three weeks of the semester, but students will be given specific times when they are open. Summary
results of these assessments are available to students at https://evaluations.ufl.edu/results/.
Class Demeanor
Students are expected to arrive to class on time and behave in a manner that is respectful to the
instructor and to fellow students. Please avoid the use of cell phones and restrict eating to outside of
the classroom. Opinions held by other students should be respected in discussion, and conversations
that do not contribute to the discussion should be held at minimum, if at all.
Materials and Supplies Fees
There are no additional fees for this course.



University Honesty Policy
UF students are bound by The Honor Pledge which states, “We, the members of the University of
Florida community, pledge to hold ourselves and our peers to the highest standards of honor and
integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of
Florida, the following pledge is either required or implied: “On my honor, I have neither given nor
received unauthorized aid in doing this assignment.” The Honor Code
(https://www.dso.ufl.edu/sccr/process/student-conducthonor-code/) specifies a number of behaviors
that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report
any condition that facilitates academic misconduct to appropriate personnel. If you have any questions
or concerns, please consult with the instructor in this class.
Counseling and Wellness Center Contact information for the Counseling and Wellness Center:
http://www.counseling.ufl.edu/cwc/Default.aspx, 392-1575; and the University Police Department: 392-
1111 or 9-1-1 for emergencies.

Grading Scheme
The course is presented in lecture format, with some practical lab-oriented instruction in computational
methods.

Grades for undergraduates are determined on the basis of homework assignments and tests (mid-
term and final), with homework accounting for 50%, and the two tests, 25% each. Homework can be
done in groups working together; tests are to be done as an individual effort.

Grading Scale (Undergraduate):

Percent Grade Grade Points

87.0 - 100: A 4.00
84.0 - 86.99: A- 3.67
81.0 - 83.99: B+ 3.33
78.0 - 80.99: B 3.00
75.0 - 77.99: B- 2.67
72.0 - 74.99: C+ 2.33
69.0 - 71.99: C 2.00
66.0 - 68.99: C- 1.67
63.0 - 65.99: D+ 1.33
60.0 – 62.99: D 1.00
50.0 – 59.99 D- 0.67
0.0 – 59.99 E 0.00

Instructor(s) Robert Walker
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Chapter 1

Introduction

Section 1.1 of this chapter introduces the concept of spatial dependence that
often arises in cross-sectional spatial data samples. Spatial data samples rep-
resent observations that are associated with points or regions, for example
homes, counties, states, or census tracts. Two motivational examples are pro-
vided for spatial dependence, one based on spatial spillovers stemming from
congestion effects and a second that relies on omitted explanatory variables.
Section 1.2 sets forth spatial autoregressive data generating processes for spa-
tially dependent sample data along with spatial weight matrices that play an
important role in describing the structure of these processes. We provide more
detailed discussion of spatial data generating processes and associated spatial
econometric models in Chapter 2, and spatial weight matrices in Chapter 4.
Our goal here is to provide an introduction to spatial autoregressive processes
and spatial regression models that rely on this type of process. Section 1.3
provides a simple example of how congestion effects lead to spatial spillovers
that impact neighboring regions using travel times to the central business
district (CBD) region of a metropolitan area. Section 1.4 describes various
scenarios in which spatial econometric models can be used to analyze spatial
spillover effects. The final section of the chapter lays out the plan of this text.
A brief enumeration of the topics covered in each chapter is provided.

1.1 Spatial dependence

Consider a cross-sectional variable vector representing observations col-
lected with reference to points or regions in space. Point observations could
include selling prices of homes, employment at various establishments, or en-
rollment at individual schools. Geographic information systems typically sup-
port geocoding or address matching which allow addresses to be automatically
converted into locational coordinates. The ability to geocode has led to vast
amounts of spatially-referenced data. Observations could include a variable
like population or average commuting time for residents in regions such as
census tracts, counties, or metropolitan statistical areas (MSAs). In contrast
to point observations, for a region we rely on the coordinates of an interior
point representing the center (the centroid). An important point is that in

1LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
         Central, http://ebookcentral.proquest.com/lib/ufl/detail.action?docID=1633523.
Created from ufl on 2018-08-29 10:56:34.

C
op

yr
ig

ht
 ©

 2
00

9.
 C

ha
pm

an
 a

nd
 H

al
l/C

R
C

. A
ll 

rig
ht

s 
re

se
rv

ed
.



2 Introduction to Spatial Econometrics

spatial regression models each observation corresponds to a location or region.
The data generating process (DGP) for a conventional cross-sectional non-

spatial sample of n independent observations yi, i = 1, . . . , n that are linearly
related to explanatory variables in a matrix X takes the form in (1.1), where
we have suppressed the intercept term, which could be included in the matrix
X .

yi = Xiβ + εi (1.1)
εi ∼ N(0, σ2) i = 1, . . . , n (1.2)

In (1.2), we use N(a, b) to denote a univariate normal distribution with mean
a and variance b. In (1.1), Xi represents a 1 × k vector of covariates or
explanatory variables, with associated parameters β contained in a k × 1
vector. This type of data generating process is typically assumed for linear
regression models. Each observation has an underlying mean of Xiβ and
a random component εi. An implication of this for situations where the
observations i represent regions or points in space is that observed values
at one location (or region) are independent of observations made at other
locations (or regions). Independent or statistically independent observations
imply that E(εiεj) = E(εi)E(εj) = 0. The assumption of independence
greatly simplifies models, but in spatial contexts this simplification seems
strained.

In contrast, spatial dependence reflects a situation where values observed at
one location or region, say observation i, depend on the values of neighboring
observations at nearby locations. Suppose we let observations i = 1 and j = 2
represent neighbors (perhaps regions with borders that touch), then a data
generating process might take the form shown in (1.3).

yi = αiyj +Xiβ + εi (1.3)
yj = αjyi +Xjβ + εj

εi ∼ N(0, σ2) i = 1
εj ∼ N(0, σ2) j = 2

This situation suggests a simultaneous data generating process, where the
value taken by yi depends on that of yj and vice versa. As a concrete example,
consider the set of seven regions shown in Figure 1.1, which represent three
regions to the west and three to the east of a central business district (CBD).

For the purpose of this example, we will consider these seven regions to con-
stitute a single metropolitan area, with region R4 being the central business
district. Since the entire region contains only a single roadway, all commuters
share this route to and from the CBD.

We might observe the following set of sample data for these regions that
relates travel times to the CBD (in minutes) contained in the dependent vari-

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
         Central, http://ebookcentral.proquest.com/lib/ufl/detail.action?docID=1633523.
Created from ufl on 2018-08-29 10:56:34.
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Introduction 3

West East

R1 R2 R3 R4 R5 R6 R7

R1 R2 R3 R4 R5 R6 R7

CBD

CBD

Highway

FIGURE 1.1: Regions east and west of the Central Business District

able vector y to distance (in miles) and population density (population per
square block) of the regions in the two columns of the matrix X .

y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Travel times
42
37
30
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30
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42

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Density Distance
10 30
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ex-urban areas
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The pattern of longer travel times for more distant regionsR1 andR7 versus
nearer regions R3 and R5 found in the vector y seems to clearly violate inde-
pendence, since travel times appear similar for neighboring regions. However,
we might suppose that this pattern is explained by the model variables Dis-
tance and Density associated with each region, since these also appear similar
for neighboring regions. Even for individuals in the CBD, it takes time to go
somewhere else in the CBD. Therefore, the travel time for intra-CBD travel
is 26 minutes despite having a distance of 0 miles.

Now, consider that our set of observed travel times represent measurements
taken on a particular day, so we have travel times to the CBD averaged over a
24 hour period. In this case, some of the observed pattern might be explained

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
         Central, http://ebookcentral.proquest.com/lib/ufl/detail.action?docID=1633523.
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4 Introduction to Spatial Econometrics

by congestion effects that arise from the shared highway. It seems plausible
that longer travel times in one region should lead to longer travel times in
neighboring regions on any given day. This is because commuters pass from
one region to another as they travel along the highway to the CBD. Slower
times in R3 on a particular day should produce slower times for this day in
regions R2 and R1. Congestion effects represent one type of spatial spillover,
which do not occur simultaneously, but require some time for the traffic delay
to arise. From a modeling viewpoint, congestion effects such as these will not
be explained by the model variables Distance and Density. These are dynamic
feedback effects from travel time on a particular day that impact travel times
of neighboring regions in the short time interval required for the traffic delay to
occur. Since the explanatory variable distance would not change from day to
day, and population density would change very slowly on a daily time scale,
these variables would not be capable of explaining daily delay phenomena.
Observed daily variation in travel times would be better explained by relying
on travel times from neighboring regions on that day. This is the situation
depicted in (1.3), where we rely on travel time from a neighboring observation
yj as an explanatory variable for travel time in region i, yi. Similarly we use
yi to explain region j travel time, yj .

Since our observations were measured using average times for one day, the
measurement time scale is not fine enough to capture the short-interval time
dynamic aspect of traffic delay. This would result in observed daily travel
times in the vector y that appear to be simultaneously determined. This is an
example of why measured spatial dependence may vary with the time-scale of
data collection.

Another example where observed spatial dependence may arise from omit-
ted variables would be the case of a hedonic pricing model with sales prices
of homes as the vector y and characteristics of the homes as explanatory vari-
ables in the matrix X . If we have a cross-sectional sample of sales prices in
a neighborhood collected over a period of one year, variation in the charac-
teristics of the homes should explain part of the variation in observed sales
prices. Consider a situation where a single home sells for a much higher price
than would be expected based solely on its characteristics. Assume this sale
took place at the mid-point of our 12 month observation period, shortly after
a positive school quality report was released for a nearby school. Since school
quality was not a variable included in the set of explanatory variables rep-
resenting home characteristics, the higher than expected selling price might
reflect a new premium for school quality. This might signal other sellers of
homes served by the same school to ask for higher prices, or to accept of-
fers that are much closer to their asking prices during the last six months
of our observation period. This would lead to a situation where use of sell-
ing prices from neighboring homes produce improved explanatory power for
homes served by the high quality school during the last six months of our sam-
ple. Other omitted variables could be accessibility to transportation, nearby
amenities such as shopping or parks, and so on. If these were omitted from

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
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Introduction 5

the set of explanatory variables consisting solely of home characteristics, we
would find that selling prices from neighboring homes are useful for prediction.

An illustration that non-spatial regression models will ignore spatial de-
pendence in the dependent variable is provided by a map of the ordinary
least-squares residuals from a production function regression: ln(Q) = αιn +
β ln(K) + γ ln(L) + ε, estimated using the 48 contiguous US states plus the
District of Columbia. Gross state product for the year 2001 was used as Q,
with labor L being 2001 total non-farm employment in each state. Capital
estimatesK for the states are from Garofalo and Yamarik (2002). These resid-
uals are often referred to as the Solow residual if constant returns to scale are
imposed so that β = φ, γ = (1 − φ). In the context of a Solow growth model,
they are interpreted as reflecting economic growth above the rate of capital
growth, or that not explained by growth in factors of production. In the case
of our production function model, these would be interpreted as total factor
productivity, so they reflect output attributable to regional variation in the
technological efficiency with which these factors are used.

Figure 1.2 shows a choropleth map of total factor productivity (the resid-
uals from our production function regression). A choropleth map relies on
shaded or patterned areas to reflect the measured values of the variable being
displayed on the map. It provides a visual depiction of how values of a vari-
able differ over space. Figure 1.3 displays an associated legend for the map
taking the form of a histogram showing the frequency distribution of states
according to the magnitude of their residuals. We see negative residuals for
12 states, including the cluster of 7 neighboring states, Texas, Oklahoma,
Louisiana, Mississippi, Tennessee Arkansas and Alabama. A negative resid-
ual would indicate that observed output Q was lower than output predicted
by the regression based on labor and capital available to these states. From
the legend in Figure 1.3 we see that blue, green and purple states represent
positive residuals. Of the 11 green states we see a cluster of these states in
the northeast, indicating that observed output for these states was above that
predicted by our regression model, reflecting higher than expected total factor
productivity.

If the residuals were randomly distributed with regard to location, we would
not see clusters of red and green states that are indicative of negative and
positive residuals associated with neighboring states. This type of clustering
represents a visual depiction of spatial dependence in the residuals or factor
productivity from the non-spatial regression model.

A question arises — what leads to the observed spatial dependence in total
factor productivity? There is a role for spatial econometric modeling methods
to play in answering this question. As we will see, different model specifica-
tions suggest different theoretical justifications, and vice versa. In traditional
econometrics there are three uses of empirical models: 1) estimation and in-
ference regarding parameters, 2) prediction or out-of-sample forecasting and
3) model comparison of alternative specifications.

We can use spatial econometric models in the same three ways to answer the

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
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6 Introduction to Spatial Econometrics

FIGURE 1.2: Solow residuals, 2001 US states (see color figure on the insert
following page 24)
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FIGURE 1.3: Solow residuals map legend (see color insert)

question regarding observed spatial dependence in dependent variables from
our models as well as residuals. For example, there has been some theoretical
work on extending neoclassical growth models to provide a justification for a
spatially lagged dependent variable (Lopez-Bazo et al., 2004; Ertur and Koch,
2007) in our production function model. A spatial lag of the dependent vari-
able is an explanatory variable vector constructed using an average of values

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
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Introduction 7

from neighboring regions. These theoretical models posit physical and human
capital externalities as well as technological interdependence between regions,
which leads to a reduced form regression that includes a spatial lag of the
dependent variable.

Spatial econometric model comparison methods could be used to test these
theories by comparing models that include a spatial lag of the dependent
variable to other model specifications that do not. Predictions or out-of-
sample forecasts from models including a spatially lagged dependent variable
could be compared to models that do not include these terms to provide
evidence in favor of these theories. Finally, estimates and inferences regarding
the significance of the parameter associated with the spatially lagged variable
could be used to show consistency of these theories with the sample data.

There are other possible explanations for the observed pattern of spatial
dependence. Since we are mapping residuals that reflect total factor produc-
tivity, these are conditional on capital and labor inputs. There is a great deal
of literature that examines regional production from the standpoint of the
new economic geography (Duranton and Puga, 2001; Autant-Bernard, 2001;
Autant-Bernard, Mairesse and Massard, 2007; Parent and LeSage, 2008).
These studies point to spatial spillovers that arise from technological inno-
vation, measured using regional patents as a proxy for the stock of knowledge
available to a region. In Chapter 3 we will provide an applied illustration of
this total factor productivity relationship that is used to quantify the magni-
tude of spatial spillovers arising from regional differences in technical innova-
tion.

In time series, lagged dependent variables can be justified by theoretical
models that include costly adjustment or other behavioral frictions which
give rise quite naturally to time lags of the dependent variable. As we saw
with the travel time to the CBD example, a similar motivation can be used for
spatial lags. Another justification often used in the case of time series is that
the lagged dependent variable accounts for variation in the dependent variable
that arises from unobserved or latent influences. As we have seen in the case
of our hedonic home sales price example, a similar justification can be used for
a spatial lag of the dependent variable. Latent unobservable influences related
to culture, infrastructure, or recreational amenities can affect the dependent
variable, but may not appear as explanatory variables in the model. Use of a
spatial regression model that includes a spatial lag of the dependent variable
vector can capture some of these influences.
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8 Introduction to Spatial Econometrics

1.2 The spatial autoregressive process

We could continue in the fashion of (1.3) to generate a larger set of obser-
vations as shown in (1.4).

yi = αi,jyj + αi,kyk +Xiβ + εi (1.4)
yj = αj,iyi + αj,kyk +Xjβ + εj

yk = αk,iyi + αk,jyj +Xkβ + εk

εi ∼ N(0, σ2) i = 1
εj ∼ N(0, σ2) j = 2
εk ∼ N(0, σ2) k = 3

It is easy to see that this would be of little practical usefulness, since it would
result in a system with many more parameters than observations.

Intuitively, once we allow for dependence relations between a set of n ob-
servations/locations, there are potentially n2 − n relations that could arise.
We subtract n from the potential n2 dependence relations because we rule out
dependence of an observation on itself.

The solution to the over-parameterization problem that arises when we al-
low each dependence relation to have relation-specific parameters is to impose
structure on the spatial dependence relations. Ord (1975) proposed a parsi-
monious parameterization for the dependence relations (which built on early
work by Whittle (1954)). This structure gives rise to a data generating pro-
cess known as a spatial autoregressive process. Applied to the dependence
relations between the observations on variable y, we have expression (1.5).

yi = ρ

n∑
j=1

Wijyj + εi (1.5)

εi ∼ N(0, σ2) i = 1, . . . , n

Where we eliminate an intercept term by assuming that the vector of ob-
servations on the variable y is in deviations from means form. The term:∑n

j=1Wijyj is called a spatial lag, since it represents a linear combination of
values of the variable y constructed from observations/regions that neighbor
observation i. This is accomplished by placing elements Wij in the n×n spa-
tial weight matrix W , such that

∑n
j=1Wijyj results in a scalar that represents

a linear combination of values taken by neighboring observations.
As an example, consider the seven regions shown in Figure 1.1. The single

first-order neighbor to region R1 is region R2, since this is the only region
that has borders that touch region R1. Similarly, region R2 has 2 first-order
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Introduction 9

neighbors, regions R1 and R3. We can define second-order neighbors as re-
gions that are neighbors to the first-order neighbors. Second-order neighbors
to region R1 would consist of all regions having borders that touch the first-
order neighbor (region R2), which are: regions R1 and R3. It is important
to note that region R1 is a second-order neighbor to itself. This is because
region R1 is a neighbor to its neighbor, which is the definition of a second-
order neighboring relation. If the neighboring relations are symmetric, each
region will always be a second order neighbor to itself. By nature, contiguity
relations are symmetric, but we will discuss other definitions of neighboring
relations in Chapter 4 that may not result in symmetry.

We can write a matrix version of the spatial autoregressive process as in
(1.6), where we use N(0, σ2In) to denote a zero mean disturbance process that
exhibits constant variance σ2, and zero covariance between observations. This
results in the diagonal variance-covariance matrix σ2In, where In represents
an n-dimensional identity matrix. Expression (1.6) makes it clear that we are
describing a relation between the vector y and the vector Wy representing a
linear combination of neighboring values to each observation.

y = ρWy + ε (1.6)
ε ∼ N(0, σ2In)

To illustrate this, we form a 7 × 7 spatial weight matrix W using the first-
order contiguity relations for the seven regions shown in Figure 1.1. This
involves associating rows of the matrix with the observation index i, and
columns with the index j representing neighboring observations/regions to
region i. We begin by forming a first-order contiguity matrix C shown in
(1.7). For row 1 we place a value of 1 in column 2, reflecting the fact that
region R2 is first-order contiguous to region R1. All other elements of row
1 receive values of zero. Similarly, for each row we place a 1 in columns
associated with first-order contiguous neighbors, resulting in the matrix C
shown in (1.7).

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2 R3 R4 R5 R6 R7
R1 0 1 0 0 0 0 0
R2 1 0 1 0 0 0 0
R3 0 1 0 1 0 0 0
R3 0 0 1 0 1 0 0
R5 0 0 0 1 0 1 0
R6 0 0 0 0 1 0 1
R7 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.7)

We note that the diagonal elements of the matrix C are zero, so regions
are not considered neighbors to themselves. For the purpose of forming a
spatial lag or linear combination of values from neighboring observations, we
can normalize the matrix C to have row sums of unity. This row-stochastic
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10 Introduction to Spatial Econometrics

matrix which we label W is shown in (1.8), where the term row-stochastic
refers to a non-negative matrix having row sums normalized so they equal
one.

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 0 1/2 0 1/2
0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.8)

The 7× 7 matrix W can be multiplied with a 7× 1 vector y of values taken
by each region to produce a spatial lag vector of the dependent variable vec-
tor taking the form Wy. The matrix product Wy works to produce a 7 × 1
vector representing the value of the spatial lag vector for each observation
i, i = 1, . . . , 7. We will provide details on various approaches to formulating
spatial weight matrices in Chapter 4, which involve alternative ways to defin-
ing and weighting neighboring observations. For now, we note that use of
the matrix W which weights each neighboring observation equally will result
in the spatial lag vector being a simple average of values from neighboring
(first-order contiguous) observations to each region. The matrix multiplica-
tion process is shown in (1.9), along with the resulting spatial lag vector Wy.

Wy =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 0 1/2 0 1/2
0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6
y7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2
(y1 + y3)/2
(y2 + y4)/2
(y3 + y5)/2
(y4 + y6)/2
(y5 + y7)/2

y6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.9)

The scalar parameter ρ in (1.6) describes the strength of spatial dependence
in the sample of observations. Use of a single parameter to reflect an average
level of dependence over all dependence relations arising from observations
i = 1, . . . , n, is one way in which parsimony is achieved by the spatial autore-
gressive structure. This is in stark contrast to our starting point in (1.3) and
(1.4), where we allowed each dependency to have its own parameter.
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Introduction 11

We can graphically examine a scatter plot of the relation between the ob-
servations in the vector y (in deviation from means form) and the average
values of neighboring observations in the vector Wy using a Moran scatter
plot. An example is shown in Figure 1.4, where we plot total factor produc-
tivity of the states, constructed using the residuals from our 2001 production
function regression on the horizontal axis, and the spatial lag values on the
vertical axis. By virtue of the transformation to deviation from means, we
have four Cartesian quadrants in the scatter plot centered on zero values for
the horizontal and vertical axes. These four quadrants reflect:

Quadrant I (red points) states that have factor productivity (residu-
als) above the mean, where the average of neighboring states’ factor
productivity is also greater than the mean,

Quadrant II (green points) states that exhibit factor productivity below
the mean, but the average of neighboring states’ factor productivity is
above the mean,

Quadrant III (blue points) states with factor productivity below the
mean, and the average of neighboring states’ factor productivity is also
below the mean,

Quadrant IV (purple points) states that have factor productivity above
the mean, and the average of neighboring states’ productivity is below
the mean.

From the scatter plot, we see a positive association between factor produc-
tivity observations y on the horizontal axis and the spatially lagged observa-
tions from Wy shown on the vertical axis, suggesting the scalar parameter ρ
is greater than zero. Another way to consider the strength of positive associ-
ation is to note that there are very few green and purple points in the scatter
plot. Green points represent states where factor productivity is below aver-
age and that of neighboring states Wy is above average. The converse is true
of the purple points, where above average factor productivity coincides with
below average factor productivity Wy from neighboring states. In contrast, a
large number of points in quadrants II and IV with few points in quadrants I
and III would suggest negative spatial dependence so that ρ < 0.

Points in the scatter plot can be placed on a map using the same color cod-
ing scheme, as in Figure 1.5. Red states represent regions with higher than
average (positive) factor productivity where the average of neighboring states’
factor productivity is also above the mean. The map makes the clustering of
northeast and western states with above average factor productivity levels
where neighboring states also have above average factor productivity quite
clear. Similarly, clustering of states with lower than average factor productiv-
ity levels and surrounding states that are also below the mean is evident in
the central and southern part of the US.
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12 Introduction to Spatial Econometrics
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FIGURE 1.4: Moran scatter plot of 2001 US states factor productivity (see
color insert)

It is tempting to interpret the scalar parameter ρ in the spatial autoregres-
sive process as a conventional correlation coefficient between the vector y and
the spatial lag vector Wy. This temptation should be avoided, as it is not
entirely accurate. We will discuss this point in more detail in Chapter 2, but
note that the range for correlation coefficients is [−1, 1], whereas ρ cannot
equal one.

1.2.1 Spatial autoregressive data generating process

The spatial autoregressive process is shown in (1.10) using matrix notation,
and the implied data generating process for this type of process is in (1.11).
We introduce a constant term vector of ones ιn, and associated parameter α
to accommodate situations where the vector y does not have a mean value of
zero.
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Introduction 13

 

 

 

 

FIGURE 1.5: Moran plot map of US states 2001 factor productivity (see
color insert)

y = αιn + ρWy + ε (1.10)
(In − ρW )y = αιn + ε

y = (In − ρW )−1ιnα+ (In − ρW )−1ε (1.11)
ε ∼ N(0, σ2In)

The n×1 vector y contains our dependent variable and ρ is a scalar parameter,
with W representing the n × n spatial weight matrix. We assume that ε
follows a multivariate normal distribution, with zero mean and a constant
scalar diagonal variance-covariance matrix σ2In.

The model statement in (1.10) can be interpreted as indicating that the
expected value of each observation yi will depend on the mean value α plus
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14 Introduction to Spatial Econometrics

a linear combination of values taken by neighboring observations scaled by
the dependence parameter ρ. The data generating process statement in (1.11)
expresses the simultaneous nature of the spatial autoregressive process. To
further explore the nature of this, we can use the following infinite series to
express the inverse:

(In − ρW )−1 = In + ρW + ρ2W 2 + ρ3W 3 + . . . (1.12)

where we assume for the moment that abs(ρ) < 1. This leads to a spatial
autoregressive data generating process for a variable vector y:

y = (In − ρW )−1ιnα+ (In − ρW )−1ε

y = αιn + ρWιnα+ ρ2W 2ιnα+ . . .

+ ε+ ρWε+ ρ2W 2ε+ ρ3W 3ε+ . . . (1.13)

Expression (1.13) can be simplified since the infinite series: ιnα+ρWιnα+
ρ2W 2ιnα + . . . converges to (1 − ρ)−1ιnα since α is a scalar, the parameter
abs(ρ) < 1, and W is row-stochastic. By definition, Wιn = ιn and therefore
W (Wιn) also equals Wιn = ιn. Consequently, W qιn = ιn for q ≥ 0 (recall
that W 0 = In). This allows us to write:

y =
1

(1 − ρ)
ιnα+ ε+ ρWε+ ρ2W 2ε+ ρ3W 3ε+ . . . (1.14)

To further explore the nature of this data generating process, we consider
powers of the row-stochastic spatial weight matrices W 2,W 3, . . . that appear
in (1.14). Let us assume that rows of the weight matrix W are constructed
to represent first-order contiguous neighbors. The matrix W 2 will reflect
second-order contiguous neighbors, those that are neighbors to the first-order
neighbors. Since the neighbor of the neighbor (second-order neighbor) to an
observation i includes observation i itself, W 2 has positive elements on the
diagonal when each observation has at least one neighbor. That is, higher-
order spatial lags can lead to a connectivity relation for an observation i
such that W 2ε will extract observations from the vector ε that point back to
the observation i itself. This is in stark contrast with our initial independence
relation in (1.1), where the Gauss-Markov assumptions rule out dependence of
εi on other observations j, by assuming zero covariance between observations
i and j in the data generating process.

To illustrate this point, we show W 2 based on the 7×7 first-order contiguity
matrixW from (1.8) in (1.15), where positive elements appear on the diagonal.
We see that for region R1 for example, the second-order neighbors are regions
R1 and R3. That is, region R1 is a second-order neighbor to itself as well as
to region R3, which is a neighbor to the neighboring region R2.

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
         Central, http://ebookcentral.proquest.com/lib/ufl/detail.action?docID=1633523.
Created from ufl on 2018-08-29 10:56:34.

C
op

yr
ig

ht
 ©

 2
00

9.
 C

ha
pm

an
 a

nd
 H

al
l/C

R
C

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Introduction 15

W 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.50 0 0.50 0 0 0 0
0 0.75 0 0.25 0 0 0

0.25 0 0.50 0 0.25 0 0
0 0.25 0 0.50 0 0.25 0
0 0 0.25 0 0.50 0 0.25
0 0 0 0.25 0 0.75 0
0 0 0 0 0.50 0 0.50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.15)

Given that abs(ρ) < 1, the data generating process assigns less influence to
disturbance terms associated with higher-order neighbors, with a geometric
decay of influence as the order rises. Stronger spatial dependence reflected in
larger values of ρ leads to a larger role for the higher order neighbors.

The dependence of each observation yi on disturbances associated with
neighboring observations as well as higher-order neighbors suggests a mean
and variance-covariance structure for the observations in the vector y that de-
pend in a complicated way on other observations. It is instructive to consider
the mean of the variable y that arises from the spatial autoregressive data
generating process in (1.13). Note that we assume the spatial weight matrix
is exogenous, or fixed in repeated sampling, so that:

E(y) =
1

(1 − ρ)
αιn + E(ε) + ρWE(ε) + ρ2W 2E(ε) + . . .

=
1

(1 − ρ)
αιn (1.16)

It is interesting to note that in social networking (Katz, 1953; Bonacich,
1987) interpret the vector b = (In − ρP )−1ιn as a measure of centrality of
individuals in a social network, where the matrix P is a binary peer matrix,
so the vector b reflects row sums of the matrix inverse.1 The vector b (referred
to as Katz-Bonacich Centrality in social networking) measures the number of
direct and indirect connections that an individual in a social network has.
For example, if the matrix P identifies friends, then P 2 points to friends of
friends, P 3 to friends of friends of friends, and so on. In social networking,
individuals are viewed as located at nodes in a network, and the parameter
ρ reflects a discount factor that creates decay of influence for friends/peers
that are located at more distant nodes. These observations merely point out
that the spatial autoregressive process has played an important role in other
disciplines beside spatial statistics, and will likely continue to grow in use and
importance.

Simultaneous feedback is useful in modeling spatial dependence relations
where we wish to accommodate spatial feedback effects from neighboring re-
gions to an origin location i where an initial impact occurred. In fact, these

1The binary peer matrix is defined like our contiguity matrix C, having values of 1 for peers
and 0 for non-peers.
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16 Introduction to Spatial Econometrics

models allow us to treat all observations as potential origins of an impact
without loss of generality. One might suppose that feedback effects would
take time, but there is no explicit role for passage of time in a cross-sectional
relation. Instead, we can view the cross-sectional sample data observations
as reflecting an equilibrium outcome or steady state of the spatial process we
are modeling. We develop this idea further in Chapter 2 and Chapter 7. This
is an interpretation often used in cross-sectional modeling and Sen and Smith
(1995) provide examples of this type of situation for conventional spatial in-
teraction models used in regional analysis. The goal in spatial interaction
models is to analyze variation in flows between regions that occur over time
using a cross-section of observed flows between origin and destination regions
that have taken place over a finite period of time, but measured at a single
point in time. We discuss spatial econometric models for origin-destination
flows in Chapter 8.

This simultaneous dependence situation does not occur in time series anal-
ysis, making spatial autoregressive processes distinct from time series autore-
gressive processes. In time series, the time lag operator L is strictly triangular
and contains zeros on the diagonal. Powers of L are also strictly triangular
with zeros on the diagonal, so that L2 specifies a two-period time lag whereas
L creates a single period time lag. It is never the case that L2 produces
observations that point back to include the present time period.

1.3 An illustration of spatial spillovers

The spatial autoregressive structure can be combined with a conventional
regression model to produce a spatial extension of the standard regression
model shown in (1.17), with the implied data generating process in (1.18). We
will refer to this as simply the spatial autoregressive model (SAR) throughout
the text. We note that Anselin (1988) labeled this model a “mixed-regressive,
spatial-autoregressive” model, where the motivation for this awkward nomen-
clature should be clear.

y = ρWy +Xβ + ε (1.17)
y = (In − ρW )−1Xβ + (In − ρW )−1ε (1.18)
ε ∼ N(0, σ2In)

In this model, the parameters to be estimated are the usual regression
parameters β, σ and the additional parameter ρ. It is noteworthy that if the
scalar parameter ρ takes a value of zero so there is no spatial dependence
in the vector of cross-sectional observations y, this yields the least-squares
regression model as a special case of the SAR model.
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Introduction 17

To provide an illustration of how the spatial regression model can be used
to quantify spatial spillovers, we reuse the earlier example of travel times to
the CBD from the seven regions shown in Figure 1.1. We consider the impact
of a change in population density for a single region on travel times to the
CBD for all seven regions. Specifically, we double the population density in
region R2 and make a prediction of the impact on travel times to the CBD
for all seven regions.

We use parameter estimates: β̂′ =
[
0.135 0.561

]
and ρ̂ = 0.642 for this

example. The estimated value of ρ indicates positive spatial dependence in
commuting times. Predictions from the model based on the explanatory vari-
ables matrix X would take the form:

ŷ(1) = (In − ρ̂W )−1Xβ̂

where ρ̂, β̂ are maximum likelihood estimates.
A comparison of predictions ŷ(1) from the model with explanatory variables

from X and ŷ(2) from the model based on X̃ shown in (1.19) is used to illus-
trate how the model generates spatial spillovers when the population density
of a single region changes. The matrix X̃ reflects a doubling of the population
density of region R2.

X̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 30
20 40
30 10
50 0
30 10
20 20
10 30

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.19)

The two sets of predictions ŷ(1), ŷ(2) are shown in Table 1.1, where we
see that the change in region R2 population density has a direct effect that
increases the commuting times for residents of region R2 by 4 minutes. It also
has an indirect or spillover effect that produces an increase in commuting times
for the other six regions. The increase in commuting times for neighboring
regions to the east and west (regions R1 and R3) are the greatest and these
spillovers decline as we move to regions in the sample that are located farther
away from region R2 where the change in population density occurred.

It is also of interest that the cumulative indirect impacts (spillovers) can be
found by adding up the increased commuting times across all other regions
(excluding the own-region change in commuting time). This equals 2.57 +
1.45 + 0.53 + 0.20 + 0.07 + 0.05 = 4.87 minutes, which is larger than the
direct (own-region) impact of 4 minutes. The total impact on all residents of
the seven region metropolitan area from the change in population density of
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18 Introduction to Spatial Econometrics

TABLE 1.1: Spatial spillovers from changes
in Region R2 population density

Regions / Scenario ŷ(1) ŷ(2) ŷ(2) − ŷ(1)

R1 : 42.01 44.58 2.57
R2 : 37.06 41.06 4.00
R3 : 29.94 31.39 1.45
R4 : CBD 26.00 26.54 0.53
R5 : 29.94 30.14 0.20
R6 : 37.06 37.14 0.07
R7 : 42.01 42.06 0.05

region R2 is the sum of the direct and indirect effects, or 8.87 minutes increase
in travel times to the CBD.2

The model literally suggests that the change in population density of region
R2 would immediately lead to increases in the observed daily commuting times
for all regions. A more palatable interpretation would be that the change in
population density would lead over time to a new equilibrium steady state
in the relation between daily commuting times and the distance and density
variables. The predictions of the direct impacts arising from the change in
density reflect ∂yi/∂Xi2, where Xi2 refers to the ith observation of the second
explanatory variable in the model. The cross-partial derivatives ∂yj/∂Xi2

represent indirect effects associated with this change.
To elaborate on this, we note that the DGP for the SAR model can be

written as in (1.20), where the subscript r denotes explanatory variable r,

y =
k∑
r=1

Sr(W )Xr + (In − ρW )−1ε (1.20)

E(y) =
k∑
r=1

Sr(W )Xr (1.21)

where Sr(W ) = (In − ρW )−1βr acts as a “multiplier” matrix that applies
higher-order neighboring relations to Xr. Models that contain spatial lags of
the dependent variable exhibit a complicated derivative of yi with respect to
Xjr , where i, j denote two distinct observations. It follows from (1.21) that:

∂E(yi)
∂Xjr

= Sr(W )ij (1.22)

where Sr(W )ij represents the ijth element of the matrix Sr(W ).

2Throughout the text we will use the terms impacts and effects interchangeably when
referring to direct and indirect effects or impacts.
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Introduction 19

As expression (1.22) indicates, the standard regression interpretation of
coefficient estimates as partial derivatives: β̂r = ∂y/∂Xr, no longer holds.
Because of the transformation of Xr by the n× n matrix Sr(W ), any change
to an explanatory variable in a given region (observation) can affect the de-
pendent variable in all regions (observations) through the matrix inverse.

Since the impact of changes in an explanatory variable differ over all obser-
vations, it seems desirable to find a summary measure for the own derivative
∂yi/∂Xir in (1.22) that shows the impact arising from a change in the ith
observation of variable r. It would also be of interest to summarize the cross
derivative ∂yi/∂Xjr(i �= j) in (1.22) that measures the impact on yi from
changes in observation j of variable r. We pursue this topic in detail in Chap-
ter 2, where we provide summary measures and interpretations for the impacts
that arise from changes represented by the own- and cross-partial derivatives.

Despite the simplicity of this example, it provides an illustration of how
spatial regression models allow for spillovers from changes in the explanatory
variables of a single region in the sample. This is a valuable aspect of spatial
econometric models that sets them apart from most spatial statistical models,
an issue we discuss in the next section.

An ordinary regression model would make the prediction that the change in
population density in region R2 affects only the commuting time of residents
in region R2, with no allowance for spatial spillover impacts. To see this, we
can set the parameter ρ = 0 in our model, which produces the non-spatial
regression model. In this case ŷ(1) = Xβ̂o and ŷ(2) = X̃β̂o, so the difference
would be X̃β̂o−Xβ̂o = (X̃−X)β̂o, where the estimated parameters β̂o would
be those from a least-squares regression.

If the DGP for our observed daily travel times is that of the SAR model,
least-squares estimates will be biased and inconsistent, since they ignore the
spatial lag of the dependent variable. To see this, note that the estimates for
β̂ from the SAR model take the form: β̂ = (X ′X)−1X ′(In − ρ̂W )y, a subject
we pursue in more detail in Chapter 2. For our simple illustration where all
values of y and X are positive, and the spatial dependence parameter is also
positive, this suggests an upward bias in the least-squares estimates. This can
be seen by noting that:

β̂ = (X ′X)−1X ′y − ρ̂(X ′X)−1X ′Wy

β̂ = β̂o − ρ̂(X ′X)−1X ′Wy

β̂o = β̂ + ρ̂(X ′X)−1X ′Wy

Since all values of y are positive, the spatial lag vector Wy will contain
averages of the neighboring values which will also be positive. This in con-
junction with only positive elements in the matrix X as well as positive ρ̂
lead us to conclude that the least-squares estimates β̂o will be biased upward
relative to the unbiased estimates β̂. For our seven region example, the least-
squares estimates were: β̂′

o =
[
0.55 1.25

]
, which show upward bias relative to
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20 Introduction to Spatial Econometrics

the spatial autoregressive model estimates: β̂′ =
[
0.135 0.561

]
. Intuitively,

the ordinary least-squares model attempts to explain variation in travel times
that arises from spillover congestion effects using the distance and population
density variables. This results in an overstatement of the true influence of
these variables on travel times.

Least-squares predictions based on the matrices X and X̃ are presented
in Table 1.2. We see that no spatial spillovers arise from this model, since
only the travel time to the CBD for region R2 is affected by the change in
population density of region R2. We also see the impact of the upward bias
in the least-squares estimates, which produce an inflated prediction of travel
time change that would arise from the change in population density.

TABLE 1.2: Non-spatial predictions for
changes in Region R2 population density

Regions / Scenario ŷ(1) ŷ(2) ŷ(2) − ŷ(1)

R1 : 42.98 42.98 0.00
R2 : 36.00 47.03 11.02
R3 : 29.02 29.02 0.00
R4 : CBD 27.56 27.56 0.00
R5 : 29.02 29.02 0.00
R6 : 36.00 36.00 0.00
R7 : 42.98 42.98 0.00

1.4 The role of spatial econometric models

A long-running theme in economics is how pursuit of self interest results in
benefits or costs that fall on others. These benefits or costs are labeled exter-
nalities. In situations where spillovers are spatial in nature, spatial economet-
ric models can quantify the magnitude of these, as illustrated by the travel
time to the CBD example.

There are a host of other examples. Technological innovation that arises as
a result of spatial knowledge spillovers from nearby regions is an example of
a positive externality or spillover. It is argued that a large part of knowledge
is tacit because ideas leading to technical innovation are embodied in persons
and linked to the experience of the inventor. This stock of knowledge increases
in a region as local inventors discover new ideas and diffuses mostly via face-
to-face interactions. We can think of knowledge as a local public good that
benefits researchers within a region as well as nearby neighboring regions.
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Introduction 21

This motivates a spatial specification for unobserved knowledge that would
not be included as a model explanatory variable. It is generally believed that
tacit knowledge linked to the experience of inventors and researchers does not
“travel well,” so knowledge spillovers are thought to be local in nature falling
only on nearby regions. We can use spatial regression models to quantify
the spatial extent of spillovers by examining indirect effects using the series
expansion In+ρW+ρ2W 2+ . . . that arises in the partial derivative expression
for these effects. Chapter 3 will explore this issue in an applied illustration
that relates regional total factor productivity to knowledge spillovers.

Pollution provides another example since these negative externalities or
spillovers are likely to be spatial in nature. The ability to quantify direct and
indirect effects from pollution sources should be useful in empirical analysis
of the classic Pigovian tax and subsidy solutions for market failure.

Regional governments are often thought to take into account actions of
neighboring governments when setting tax rates (Wilson, 1986) and deciding
on provision of local government services (Tiebout, 1956). Spatial economet-
ric models can be used to empirically examine the magnitude and statistical
significance of local government interaction. Use of the partial derivative mea-
sures of direct and indirect effects that arise from changes in the explanatory
variables should be particularly useful from a public policy perspective. In a
model of county government decisions, direct effects estimates pertain to im-
pacts that would be of primary concern to that county’s government officials,
whereas spillover and total effects reflect the broader perspective of society
at large. Much of the public choice literature focuses on situations where
private and public, or local and national government interests diverge. In the
case of local and national governments, the divergence can be viewed in terms
of spatial spillover effects. Again, the ability of spatial regression models to
quantify the relative magnitude of the divergence should be useful to those
studying public choice issues.

There is a fundamental difference between models containing spatial lags of
the dependent variable and those modeling spatial dependence in the distur-
bances. We explore this using the general error model in (1.23), where F (W )
in (1.24) represents a non-singular matrix function involving a spatial weight
matrix W .

y = Xβ + ε (1.23)
ε = F (W )ε (1.24)

The expectation of y for these error models appears in (1.25).

E(y) = Xβ (1.25)

This means that all of the various types of error models have the same expecta-
tion as the non-spatial model. Sufficiently large sample sizes using consistent
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22 Introduction to Spatial Econometrics

estimators on the various models should yield identical estimates of the pa-
rameters β. For small samples the estimates could vary, and using models
that differ from the DGP could lead to inconsistent estimates of dispersion
for the model parameters. Interpretation of the parameters β from this type
of model is the same as for a non-spatial linear regression model.

Anselin (1988) provides a persuasive argument that the focus of spatial
econometrics should be on measuring the effects of spillovers. We pay limited
attention to error models in this text because these models eliminate spillovers
by construction. These could be added by making X more spatially complex,
but there are more appealing alternatives that we will explore here.

1.5 The plan of the text

This introductory chapter focused on a brief introduction to spatial depen-
dence and spatial autoregressive processes, as well as spatial weight matrices
used in these processes. These processes can be used to produce a host of spa-
tial econometric models that accommodate spatial dependence taking various
forms.

Chapter 2 provides more detailed motivations for spatial dependence and
the use of spatial regression models. We elaborate on the idea that omitted or
excluded variables in our models that exhibit spatial dependence can lead to
spatial regression models that contain spatial lags of the dependent variable.
Cross-sectional simultaneous spatial regression models are also motivated as
a long-run steady-state outcome of non-simultaneous dependence situations.
We consider situations where economic agents can observe past actions of
neighboring agents, for example county government officials should be aware
of neighboring government tax rates or levels of government services provision
in the previous period. This type of non-simultaneous space-time dynamic
relationship is consistent with a cross-sectional simultaneous spatial regression
relationship that represents the long-run steady state outcome of the space-
time dynamic relationship. We also provide details regarding interpretation
of estimates from these models. An elaboration is provided regarding direct
and indirect effects associated with changes in explanatory variables that was
introduced in the travel time example of this chapter.

Chapter 3 will focus on a family of spatial regression models popularized by
Anselin (1988) in his influential text on spatial econometrics. The implications
for estimates and inferences based on least-squares estimates from non-spatial
regression in the presence of spatial dependence are discussed. This chapter
also provides details regarding computational aspects of maximum likelihood
estimation for the family of spatial regression models. Computational meth-
ods have advanced considerably since 1988, the year of Anselin’s text.

LeSage, James P., and R. Kelley Pace. Introduction to Spatial Econometrics, Chapman and Hall/CRC, 2009. ProQuest Ebook
         Central, http://ebookcentral.proquest.com/lib/ufl/detail.action?docID=1633523.
Created from ufl on 2018-08-29 10:56:34.

C
op

yr
ig

ht
 ©

 2
00

9.
 C

ha
pm

an
 a

nd
 H

al
l/C

R
C

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Introduction 23

Chapter 4 addresses various computational and theoretical aspects of spa-
tial econometric models. Topics include computation of spatial weight ma-
trices, log-determinants (including numerous special cases such as the matrix
exponential, equation systems, multiple weight matrices, and flow matrices),
derivatives of log-determinants, diagonals of the variance-covariance matrix,
and closed-form solutions for a number of single-parameter spatial models.

Conventional Bayesian methods for analyzing spatial econometric models
(Anselin, 1988; Hepple, 1995a,b) as well as more recent Bayesian Markov
Chain Monte Carlo (MCMC) methods (LeSage, 1997) for estimating spatial
regression models are the subject of Chapter 5. The approach set forth in
LeSage (1997) allows formal treatment of spatial heterogeneity that is mo-
tivated in Chapter 2. We show that many of the computational advances
described for maximum likelihood estimation in Chapter 3 also work to sim-
plify Bayesian estimation of these models.

Model specification and comparison is the topic of Chapter 6. Specification
issues considered include the form of the weight matrix, the usual concern
about appropriate explanatory variables, and questions regarding which of
the alternative members of the family of spatial regression models introduced
in Chapter 3 should be employed. We show how formal Bayesian model
comparison methods proposed by LeSage and Parent (2007) can be used to
answer questions regarding appropriate explanatory variables for the family of
models from Chapter 3. Bayesian model comparison methods can also be used
to discriminate between models based on alternative spatial weight matrices
as noted by LeSage and Pace (2004a) and different specifications arising from
the family of spatial regression models from Chapter 3 (Hepple, 2004).

Chapter 7 is unlike other chapters in the text since it is more theoreti-
cal, focusing on spatiotemporal foundations for observed cross-sectional spa-
tial dependence. Starting with the assumption that regions are influenced
only by own and other regions past period values we develop a spatiotem-
poral motivation for simultaneous spatial dependence implied by the spatial
autoregressive process. We elaborate on the discussion in Chapter 2 show-
ing how time dependence on past decisions of neighboring economic agents
will lead to simultaneous spatial regression specifications. We show that a
strict spatiotemporal framework consistent with a spatial partial adjustment
mechanism can result in a long-run equilibrium characterized by simultaneous
spatial dependence.

Spatial econometric extensions of conventional least-squares gravity or spa-
tial interaction models described in Sen and Smith (1995) are the topic of
Chapter 8. We present spatial regression models similar to those from Chap-
ter 3 introduced by LeSage and Pace (2008) that can be applied to models
that attempt to explain variation in flows between origins and destinations.
Allowing for spatial dependence at origins, destinations, and between origins
and destinations leads to a situation where changes at either the origin or
destination will give rise to forces that set in motion a series of events. We
explore the notion advanced by Behrens, Ertur and Koch (2007) that spatial
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24 Introduction to Spatial Econometrics

dependence suggests a multilateral world where indirect interactions link all
regions. This contrasts with conventional emphasis on bilateral flows from
origin to destination regions.

Chapter 9 sets forth an alternative approach for spatial econometric model-
ing that replaces the spatial autoregressive process with a matrix exponential
approach to specifying spatial dependence structures (LeSage and Pace, 2007,
2004b). This has both computational as well as theoretical advantages over
the more conventional spatial autoregressive process. We discuss both maxi-
mum likelihood and Bayesian approaches to estimating models based on this
new spatial process specification.

Chapter 10 takes up the topic of spatial regressions involving binary, count
or truncated dependent variables. This draws on work regarding binary de-
pendent variables in the context of the family of models from Chapter 3
described in LeSage (2000) and surveyed by Flemming (2004). Use of spatial
autoregressive processes as a Bayesian prior for spatially structured effects
introduced in Smith and LeSage (2004) for the case of probit models and
in LeSage, Fischer and Scherngell (2007) for Poisson count data models are
also discussed. This approach to structuring individual effects parameters can
be used to overcome problems that typically arise when estimating individ-
ual effects (Christensen, Roberts and Sköld, 2006; Gelfand, Sahu and Carlin,
1995).
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Figure 1.2
Solow residuals, 2001 US states. 
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Figure 1.3
Solow residuals map legend.
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Figure 1.4
Moran scatter plot of 2001 US states factor productivity.

Figure 1.5
Moran plot map of US states 2001 factor productivity.
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