Cover Sheet: Request 11727

SWS 4XXX - Nanotechnology in Food, Agriculture, and Environment

Info

Process	Course New Ugrad/Pro
Status	Pending at PV - University Curriculum Committee (UCC)
Submitter	Michael Sisk mjsisk@ufl.edu
Created	6/28/2017 11:01:05 AM
Updated	10/9/2017 4:05:37 PM
Description of	New Undergraduate Course in Soil and Water Sciences Department.
request	

Actions

Step	Status	Group	User	Comment	Updated
Department	Approved	CALS - Soil and Water Science 514921000	Michael Sisk		6/28/2017
		_&_Graduate Coo			6/28/2017
College	Approved	CALS - College of Agricultural and Life Sciences	Michael Sisk	Corrections requested by the CALS CC have been addressed.	9/1/2017
No document of	hanges				
University Curriculum Committee	Commented	PV - University Curriculum Committee (UCC)	Michael Sisk	Added to October agenda.	9/14/2017
No document of					
University Curriculum Committee	Pending	PV - University Curriculum Committee (UCC)			9/14/2017
No document of	hanges				
Statewide Course Numbering System					
No document of	hanges				
Office of the Registrar					
No document of	hanges				
Student Academic Support System					
No document of	hanges				
No document of College Notified	hanges				
No document of	hanges				

Course|New for request 11727

Info

Request: SWS 4XXX - Nanotechnology in Food, Agriculture, and Environment

Description of request: New Undergraduate Course in Soil and Water Sciences Department.

Submitter: Michael Sisk mjsisk@ufl.edu

Created: 10/9/2017 9:46:16 AM

Form version: 3

Responses

Recommended PrefixSWS
Course Level 4
Number XXX
Category of Instruction Joint (Ugrad/Grad)
Lab Code None
Course TitleNanotechnology in Food, Agriculture, and Environment
Transcript TitleNanotechnology Appl.
Degree TypeBaccalaureate

Delivery Method(s)4138Online

Co-ListingYes

Co-Listing ExplanationGraduate Students Will Be Required To Conduct an Independent Nanotechnology Project. For this project, students will select one of the nanotechnology application areas (food processing/preservation, agricultural production/nanofertilizers, soil and water quality, and environment-pollution control/toxicology, etc.), conduct a literature review based on journal articles, book chapters, and/or proceeding papers, discuss the characteristics of the concept/approach, its limitations, and benefits, submit a report, and present results of their independent study.

Effective Term Earliest Available Effective YearEarliest Available Rotating Topic?No Repeatable Credit?No

Amount of Credit3

S/U Only?No

Contact Type Regularly Scheduled

Weekly Contact Hours 3

Course Description Application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

Prerequisites SWS 3022 - Intro to Soils in the Environment

Co-requisites None

Rationale and Placement in Curriculum Nanotechnology is at the forefront of many contemporary advances in science and engineering. A literacy in the topic is vital for students with trajectories toward food, agricultural, and natural resource conservation careers. We feel this course will help to bolster the curriculum to that end.

Course Objectives This course will cover the fundamentals of nanoscience and nanotechnology, application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

- Understand basic concepts, principles, and components of nanotechnology. At the end of the course all students will be able to describe basic theory of nanoscience and nanotechnology.
- Learn skills in the creation and characterization of nanomaterials. At the end of the course all

students will be familiar with methods for characterizing important properties of nanomaterials commonly used in agriculture and the environment.

- Familiar with application of nanotechnology in agriculture, food, and environment. At the end of the course all students will be able to apply nanotechnology to solve some problems in the fields of food, agriculture, and environment.
- Gain knowledge in toxicology of engineered nanoparticles (EPs) and current methods of assessment. At the end of the course all students will be able to understand potential impact of EPs and conduct simple environmental risk assessment.

Course Textbook(s) and/or Other Assigned ReadingNo textbook is required. Reference books, journal articles, and related information links are provided on course website and in disk. Some examples of general readings that support several topics are listed as follows:

Reference Books:

Poole Jr., C. A., and F. J. Owens (ed).2003.Introduction to nanotechnology. John Wiley & Sons, Hoboken, NJ, ISBN 0-471-07935-9.

Sellers, K., C. Mackay, L. L. Bergeson, S. R. Clough, M. Hoyt, J. Chen, K. Henry, and J. Hamblen (eds.). 2009. Nanotechnology and the Environment. CRC Press, Boca Raton, FL.

Wiesner, M. R. and J. Y. Bottero (ed). 2007. Environmental Nanotechnology: application and impacts of nanomaterials. The McGraw-Hill Co, New York.

Batley, G. E., J. K. Kirby, and M. J. McLaughlin. 2011. Fate and risks of nanomaterials in aquatic and terrestrial environments. Accounts of Chemical Research 46: 854-862.

Bergeson, L. L. 2013. Sustainable nanomaterials: Emerging governance systems. ACS Sustainable Chemistry and Engineering 1: 724-730.

Rico, C. M., S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, and J. L. Gardea-Teooresdey. 2011

Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry 59: 3485-3498.

Weir, A, P. Westerhoff, L. Fabricius, K. Hristovski and N. von Goetz. 2012. Titanium dioxide nanoparticles in food and personal care products. Environmental Science and Technology 46: 2242-2250.

Weekly Schedule of Topics COURSE CHAPTERS

Nanotechnology in Agriculture, Food and Environment

Module I	Basic concepts and principles of nanotechnology
Chapter 1	Fundamentals of Nanoscience and Nanotechnology
Chapter 2	Nanoscale Materials: Definition and Properties
Chapter 3	Manufacturing and Characterization of Nanoparticles
Chapter 4	Natural Nanoparticles and Their Role in Soil and Water Quality
Module II	Nanotechnology Applications
Chapter 5	Nanotechnology Application in Agriculture

Chatper 6 Nanotechnology Application in Food Sciences Chapter 7 Nanotechnology Application in the Environment Behavior, environmental toxicology and regulations of nanoparticle Module III Chatper 8 Environmental Fate and Transport of Engineered Nanoparticles Chapter 9 **Environmental Toxicology of Engineered Nanoparticles** Chapter 10 **Environmental Regulation of Engineered Nanomaterials** Module IV Smart nano-delivery systems Chapter 11 Smart Nanoscale Systems for Targeted Delivery of Drugs, Nutrients and Pesticides

Teaching schedule*

Week Topics covered Lectures/reading materials/assignments

Introduction/ historic development and fundamentals of nanoscience and nanotechnology Lecture 1/Chapter 1

Reading materials Assignment 1

- 2 Nanoscale materials: definition and properties Lecture 2/Chapter 2 Reading materials
 Assignment 2
- 3 Manufacturing and characterization of nanoparticles Lecture 3/Chapter 3 Reading materials
 Assignment 3
- 4 Natural nanoparticles and their role in soil and water quality Lecture 4/Chapter 4 Reading materials
- 5 Nanotechnology application in agriculture I & II Lectures 5/Chapters 5 Reading materials
 Assignment 5
- 6 Nanotechnology application in food sciences Lecture 6/Chapter 6 Reading materials Assignment 5
- 7 Spring break
- 8 Nanotechnology application in the environment Lecture 7/Chapter 7 Reading materials
 Assignment 6
- 9 Course review Mid-term exam
- 10 Environmental fate and transport of engineered nanomaterials Lecture 8/Chapter 8 Reading materials Assignment 7
- 11 Environmental toxicology of engineered nanoparticles Lecture 9/Chapter 9 Reading materials
 Assignment 8
- 12 Environmental regulation of engineered nanomaterial Lecture 10/Chapter 10 Reading materials

Smart Nanoscale Systems for Targeted Delivery of Drugs, Nutrients and Pesticides Lecture 11/Chapter 11

Reading materials

14-15 Course review

16 Final exam

Links and PoliciesGRADES AND GRADE POINTS: For information on current UF policies for assigning grade points, see https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

ABSENCES AND MAKE-UP WORK: Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx

ACADEMIC HONESTY: As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity." You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes, exams). Furthermore, as part of your obligation to uphold the Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

SOFTWARE USE: All faculty, staff, and students of the University of Florida are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

CAMPUS RESOURCES:

Health and Wellness

U Matter, We Care:

If you or a friend is in distress, please contact umatter@ufl.edu or 352 392-1575 so that a team member can reach out to the student.

Counseling and Wellness Center:

http://www.counseling.ufl.edu/cwc/Default.aspx, 392-1575;

Sexual Assault Recovery Services (SARS) Student Health Care Center, 392-1161.

University Police Department, 392-1111 (or 9-1-1 for emergencies). http://www.police.ufl.edu/

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml.

Career Resource Center, Reitz Union, 392-1601. Career assistance and counseling.

^{*} Dates for topics or exams are subject to change.

http://www.crc.ufl.edu/

Library Support, http://cms.uflib.ufl.edu/ask . Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. http://teachingcenter.ufl.edu/

Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers. http://writing.ufl.edu/writing-studio/

Student Complaints Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf On-Line Students Complaints: http://www.distance.ufl.edu/student-complaint-process

STUDENTS WITH DISABILITIES: The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

ONLINE COURSE EVALUATION: Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

STUDENT COMPLAINTS: Each online distance learning program has a process for, and will make every attempt to resolve, student complaints within its academic and administrative departments at the program level. See http://distance.ufl.edu/student-complaints

Grading Scheme GRADING:

Homework/Quizzes: 30%

Chat room attendance 5% Mid-term Examination: 30%

Final Examination 35%

Total

100%

There will be no make-up homework and exams. Late submission of assignments will result in reduced credit (10% per assignment) if it is not agreed upon in advance.

94 - 100%90 - 93%A-B+ 87 - 89%83 - 86%В 80 - 82%B-C+ 77 - 79%С 73 - 76%70 – 72% C-67 – 69% D+ 63 - 66%D D-60 - 62%Ε

< 60%

Instructor(s) Dr. Zhenli L. He, Professor University of Florida, IFAS, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL. 34945 Tel 772-577-7353 Fax 772-468-5668

E-mail: zhe@ufl.edu

Institute of Food and Agricultural SciencesSoil and Water Sciences Department

June 26, 2017

2181 McCarty Hall PO Box 110290 University of Florida Gainesville, FL 32611 Telephone: 352-294-3110 Fax: 352-392-3902

apatite@ufl.edu

Dear CALS Curriculum Committee:

We are requesting that the course entitled "Nanotechnology in Food, Agriculture, and Environment", currently awaiting assignment of a unique course number, be approved as a 4XXX/6XXX co-taught course. It broadly covers fundamentals of nanotechnology as it is applied to crop production, food processing and preservation, and environmental remediation. It also addresses behavior of nanoparticles in plants and soils, as well as toxicology and regulations of engineered nanoparticles. Nanotechnology is at the forefront of many contemporary advances in science and engineering. A literacy in the topic is vital for students with trajectories toward food-, agricultural-, and natural resource conservation careers. We feel this course will help to bolster the curriculum to that end. Another nanotechnology course (Nanotechnology in Water Research; ABE 6266) is taught in the Agricultural and Biological Engineering Department. Most of the ABE 6266 content focuses on water pollution and nanotechnology applications to wastewater treatment; hence, it is largely distinct from the emphasis of the proposed course.

Graduate students will have the additional requirement of an independent nanotechnology project for which they will select one of the nanotechnology application areas (food processing/preservation, agricultural production/nanofertilizers, soil and water quality, and environment-pollution control/toxicology, *etc.*). The project (20% of the course grade) will require writing and presenting a report that includes literature review and discussion of the concept, limitations, and benefits.

Dr. James Bonczek

Undergraduate Coordinator, Senior Lecturer, Soil and Water Sciences Department

W. G./Harris
Dr. Willie Harris

Graduate Coordinator, Professor, Soil and Water Sciences Department

The grading rubric for graduate student's final project

Components	Poor	Acceptable	Good	Excellent	Full
	(≤ 60 %)	(61-80 %)	(81-90 %)	(91-100 %)	score
6 : .:6:		Content	-1	G: 16:	10
Scientific	No obvious scientific	Scientific question is not	There is a scientific	Significant questions are	10
questions	questions to be addressed.	explicitly presented.	question clearly stated.	logically addressed.	
Hypothesis	No hypothesis.	There is hypothesis, but not	There is a well presented	Meaningful hypotheses	5
		well presented.	hypothesis.	are logically addressed.	
Methodology	No experimental design	There is experimental design,	There is experiment	The experiments are	10
	and lack of adequate	but lack of adequate	design with measurement	statistically designed with	
	methods.	methods.	methods.	adequate methods.	
Data process &	No statistical analysis of	There is statistical analysis of	The data are statistically	The data are statistically	5
statistical	the data.	the data but not sufficient.	analyzed but not well	analyzed and well	
analysis			presented.	presented.	
Results and	Interpretation of the data	The results are presented but	The results are adequately	The results are well	20
Discussion	is lacking.	not well discussed.	presented and discussed.	presented and discussed.	
		Communication	on		
Organization	No logical structure of the	The paper and presentation	The paper and	Well organized with	10
	paper and presentation.	is structured in a way but	presentation is logically	proper proportions of	
		hard to follow.	structured.	text, figures, and pictures.	
Language	Poor with many errors in	Adequate with minor errors	Written clearly without	Well written with good	10
	grammar and spelling.	in grammar and spelling	obvious errors in grammar	flow of ideas and easy to	
			and spelling	follow	
Colors &	Colors are arbitrarily	Use of some colors and	Colors and figures are	Colors and figures are well	10
figures	chosen and figures are	figures to present	used to enhance	designed to communicate	
	poorly designed.	information.	presentation.	ideas.	
Presentation	Not clear and timely	Good speech but not timely	Good speech and timely	Well presented and timely	10
Acknowledg	Minimal citation	With some citations and	Completely cited and	Well cited and	10
ment		references	acknowledged.	acknowledged with	
				journal standards	

NANOTECHNOLOGY IN FOOD, AGRICULTURE AND ENVIRONMENT (SWS 4XXX)

3 Credits- Every Spring

INSTRUCTOR: Dr. Zhenli L. He, Professor

University of Florida, IFAS, Indian River Research and Education Center,

2199 South Rock Road, Fort Pierce, FL. 34945

Tel 772-577-7353 Fax 772-468-5668

E-mail: zhe@ufl.edu

CATALOG DESCRIPTION:

Application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

PRE-REQUISITES/CO-REQUISITES:

Basic knowledge in soil sciences, environmental sciences, or equivalent courses in the related fields; SWS 3022 – Intro to Soils in the Environment

COURSE OBJECTIVES:

This course will cover the fundamentals of nanoscience and nanotechnology, application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

- Understand basic concepts, principles, and components of nanotechnology. At the end of the course all students will be able to describe basic theory of nanoscience and nanotechnology.
- Learn skills in the creation and characterization of nanomaterials. At the end of the course all students will be familiar with methods for characterizing important properties of nanomaterials commonly used in agriculture and the environment.
- Familiar with application of nanotechnology in agriculture, food, and environment. At the end of the course all students will be able to apply nanotechnology to solve some problems in the fields of food, agriculture, and environment.
- Gain knowledge in toxicology of engineered nanoparticles (EPs) and current methods of assessment. At the end of the course all students will be able to understand potential impact of EPs and conduct simple environmental risk assessment.

DELIVERY METHOD: Online-Canvas E-Learning System and audio/video lectures (with

powerpoint presentations and reading materials)

OFFICE HOURS: Open for e-mail and phone call at any time or chat room by appointment.

FREQUENCY: Spring semester, every year

TARGET STUDENTS: Undergraduate students who wish to expand their knowledge in emerging

sciences and become a specialist in food, agriculture, and environment.

CLASS ATTENDANCE: Attendance of chat sessions is mandatory. There is 5% grade for chat

room participation.

CHAT ROOM SESSION: Chat room session is scheduled 5-7 PM every Tuesday except for public

holidays.

GRADING: Homework/Quizzes: 30%

Α

Chat room attendance 5%
Mid-term Examination: 30%
Final Examination 35%
Total 100%

Students are responsible for satisfying all academic objectives as defined by the instructor. Absences count from the first class meeting.

A- 90 - 93.9% B+ 87 - 89.9% B 83 - 86.9% B- 80 - 82.9% C+ 77 - 79.9% C 73 - 76.9% C- 70 - 72.9%

94 - 100%

D+ 67 – 69.9% D 63 – 66.9%

D- 60 – 62.9%

E < 60%

ASSIGNMENTS/ EXAMS/PROJECTS: Nanotechnology is one of the rapidly-developing frontiers with application in many fields including food, agriculture /LECTURES and environment. This course involves new concepts, principles, application, and measurements. It is important that the students have a good understanding of the concepts and principles. Therefore, in addition to lectures, the students will be also provided with supplementary course materials to read and homework to do at the end of each chapter. The students are required to submit homework report timely in order to obtain scores. The midterm examination is designed to check the study progresses of each student so that some adjustment can be made based on student's performance. All the students are required to take final examination, which is used to indicate the learning efficacy and accomplishments of each student.

TEXTBOOK/REFERENCES:

No textbook is required. Reference books, journal articles, and related information links are provided on course website and in disk. Some examples of general readings that support several topics are listed as follows:

Reference Books:

- Poole Jr., C. A., and F. J. Owens (ed).2003.Introduction to nanotechnology. John Wiley & Sons, Hoboken, NJ, ISBN 0-471-07935-9.
- Sellers, K., C. Mackay, L. L. Bergeson, S. R. Clough, M. Hoyt, J. Chen, K. Henry, and J. Hamblen (eds.). 2009. Nanotechnology and the Environment. CRC Press, Boca Raton, FL.
- Wiesner, M. R. and J. Y. Bottero (ed). 2007. Environmental Nanotechnology: application and impacts of nanomaterials. The McGraw-Hill Co, New York.
- Batley, G. E., J. K. Kirby, and M. J. McLaughlin. 2011. Fate and risks of nanomaterials in aquatic and terrestrial environments. *Accounts of Chemical Research* 46: 854-862.
- Bergeson, L. L. 2013. Sustainable nanomaterials: Emerging governance systems. *ACS Sustainable Chemistry and Engineering* 1: 724-730.
- Rico, C. M., S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, and J. L. Gardea-Teooresdey. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. *Journal of Agricultural and Food Chemistry* 59: 3485-3498.
- Weir, A, P. Westerhoff, L. Fabricius, K. Hristovski and N. von Goetz. 2012. Titanium dioxide nanoparticles in food and personal care products. *Environmental Science and Technology* 46: 2242-2250.

COURSE CHAPTERS

Nanotechnology in Agriculture, Food and Environment

Module I	Basic concepts and principles of nanotechnology
Chapter 1	Fundamentals of Nanoscience and Nanotechnology
2	Nanoscale Materials: Definition and Properties
3	Manufacturing and Characterization of Nanoparticles
4	Natural Nanoparticles and Their Role in Soil and Water Quality
Module II	Nanotechnology Applications
5	Nanotechnology Application in Agriculture
6	Nanotechnology Application in Food Sciences
7	Nanotechnology Application in the Environment
Module III	Behavior, environmental toxicology and regulations of nanoparticle
8	Environmental Fate and Transport of Engineered Nanoparticles
9	Environmental Toxicology of Engineered Nanoparticles
10	Environmental Regulation of Engineered Nanomaterials

Module IV Smart nano-delivery systems

Smart Nanoscale Systems for Targeted Delivery of Drugs, Nutrients and Pesticides

Teaching schedule*

Week	Topics covered	Lectures/reading
		materials/assignments
1	Introduction/ historic development and	Lecture 1/Chapter 1
	fundamentals of nanoscience and nanotechnology	Reading materials
		Assignment 1
2	Nanoscale materials: definition and properties	Lecture 2/Chapter 2
		Reading materials
		Assignment 2

nanoparticl	es	Reading materials
		Assignment 3
4 Natural nan	noparticles and their role in soil and	Lecture 4/Chapter 4
water quali	ty	Reading materials
5 Nanotechno	ology application in agriculture I & II	Lectures 5/Chapters 5
		Reading materials
		Assignment 5
6 Nanotechno	ology application in food sciences	Lecture 6/Chapter 6
		Reading materials
		Assignment 5
7		Spring break
8 Nanotechno	ology application in the environment	Lecture 7/Chapter 7
		Reading materials
		Assignment 6
9 Course revi	iew	Mid-term exam
10 Environme	ntal fate and transport of engineered	Lecture 8/Chapter 8
nanomateri	als	Reading materials
		Assignment 7
11 Environme	ntal toxicology of engineered	Lecture 9/Chapter 9
nanoparticl	es	Reading materials
		Assignment 8
12 Environment	ntal regulation of engineered	Lecture 10/Chapter 10
nanomateri	al	Reading materials
13 Smart Nano	oscale Systems for Targeted Delivery of	Lecture 11/Chapter 11
_	rients and Pesticides	Reading materials
14-15 Course revi	iew	
16 Final exam	oms are subject to change	

^{*} Dates for topics or exams are subject to change.

GRADES AND GRADE POINTS: For information on current UF policies for assigning grade points, see https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

ABSENCES AND MAKE-UP WORK: Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.

ACADEMIC HONESTY: As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity." You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes,

exams). Furthermore, as part of your obligation to uphold the Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

SOFTWARE USE: All faculty, staff, and students of the University of Florida are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

CAMPUS RESOURCES:

Health and Wellness

U Matter, We Care:

If you or a friend is in distress, please contact umatter@ufl.edu or 352 392-1575 so that a team member can reach out to the student.

Counseling and Wellness Center:

http://www.counseling.ufl.edu/cwc/Default.aspx, 392-1575;

Sexual Assault Recovery Services (SARS) Student Health Care Center, 392-1161.

University Police Department, 392-1111 (or 9-1-1 for emergencies). http://www.police.ufl.edu/

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml.

University Counseling & Wellness Center, 3190 Radio Road, 352-392-1575,

www.counseling.ufl.edu/cwc/

Counseling Services

Groups and Workshops

Outreach and Consultation

Self-Help Library

Wellness Coaching

U Matter We Care, www.umatter.ufl.edu/

Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/

Library Support, $\underline{\text{http://cms.uflib.ufl.edu/ask}}$. Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. http://teachingcenter.ufl.edu/

Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers. http://writing.ufl.edu/writing-studio/

Student Complaints Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf

On-Line Students Complaints: http://www.distance.ufl.edu/student-complaint-process

STUDENTS WITH DISABILITIES: The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

ONLINE COURSE EVALUATION: Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

STUDENT COMPLAINTS: Each online distance learning program has a process for, and will make every attempt to resolve, student complaints within its academic and administrative departments at the program level. See http://distance.ufl.edu/student-complaints for more details.

NANOTECHNOLOGY IN FOOD, AGRICULTURE AND ENVIRONMENT (SWS 6XXX)

3 Credits- Every Spring

INSTRUCTOR: Dr. Zhenli L. He, Professor

University of Florida, IFAS, Indian River Research and Education Center,

2199 South Rock Road, Fort Pierce, FL 34945

Tel 772-577-7353 Fax 772-468-5668

E-mail: zhe@ufl.edu

CATALOG DESCRIPTION:

Application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

PRE-REQUISITES/CO-REQUISITES:

Basic knowledge in soil sciences, soil and water chemistry, environmental sciences or equivalent courses in the related fields; SWS 5050 – Soils for Environmental Professionals

COURSE OBJECTIVES:

This course will cover the fundamentals of nanoscience and nanotechnology, application of nanotechnology in crop production, food processing and preservation, and environmental remediation; behavior of engineered nanoparticles in plant, soil and the environment, and environmental toxicology and regulations of engineered nanoparticles.

- Understand basic concepts, principles, and components of nanotechnology. At the end of the course all students will be able to describe basic theory of nanoscience and nanotechnology.
- Develop skills in the creation and characterization of nanomaterials. At the end of the course all students will be familiar with methods for characterizing important properties of nanomaterials commonly used in agriculture and the environment.
- Gain expertise in application of nanotechnology in agriculture, food, and environment. At the end of the course all students will be able to apply nanotechnology to solve some problems in the fields of food, agriculture, and environment.
- Learn toxicology of engineered nanoparticles (EPs) and current methods of assessment. At the end of the course all students will be able to understand potential impact of EPs and conduct simple environmental risk assessment.

DELIVERY METHOD: Online-Canvas E-Learning System and audio/video lectures (with

powerpoint presentations and reading materials)

OFFICE HOURS: Open for e-mail and phone call at any time or chat room by appointment.

FREQUENCY: Spring semester, every year

TARGET STUDENTS: Graduate students who wish to expand their knowledge in emerging

sciences and become a specialist in food, agriculture, and environment.

CLASS ATTENDANCE: Attendance of chat sessions is mandatory. There is 5% grade for chat

room participation.

CHAT ROOM SESSION: Chat room session is scheduled 5-7 PM every Tuesday except for public

holidays.

GRADING: Homework/Quizzes: 30%

Chat room attendance 5%
Mid-term Examination: 20%
Project 20%
Final Examination 25%
Total 100%

Students are responsible for satisfying all academic objectives as defined by the instructor. Absences count from the first class meeting.

Α 94 - 100%90 - 93.9%A-87 - 89.9%B+В 83 - 86.9%B-80 - 82.9%C+77 - 79.9%C 73 - 76.9%C-70 - 72.9%67 - 69.9%D+D 63 - 66.9%D-60 - 62.9%E < 60%

ASSIGNMENTS/ EXAMS/PROJECTS: Nanotechnology is one of the rapidly-developing frontiers with application in many fields including food, agriculture /LECTURES and environment. This course involves new concepts, principles, application, and measurements. It is important that the students have a good understanding of the concepts and principles. Therefore, in addition to lectures, the students will be also provided with supplementary course materials to read and homework to do at the end of each chapter. The students are required to submit homework report timely in order to obtain scores. The midterm examination is designed to check the study progresses of each student so that some adjustment can be made based on student's performance. In this course, each student is required to conduct an independent nanotechnology project. For this project, students will select one of the nanotechnology application areas (food processing/preservation, agricultural production/nanofertilizers, soil and water quality, and environment-pollution control/toxicology, etc.), conduct a literature review based on journal articles, book chapters, and/or proceeding papers, discuss the characteristics of the concept/approach, its limitations, and benefits, submit a report, and present results of their independent study.

TEXTBOOK/REFERENCES:

No textbook is required. Reference books, journal articles, and related information links are provided on course website and in disk. Some examples of general readings that support several topics are listed as follows:

Reference Books:

- Poole Jr., C. A., and F. J. Owens (ed).2003.Introduction to nanotechnology. John Wiley & Sons, Hoboken, NJ, ISBN 0-471-07935-9.
- Sellers, K., C. Mackay, L. L. Bergeson, S. R. Clough, M. Hoyt, J. Chen, K. Henry, and J. Hamblen (eds.). 2009. Nanotechnology and the Environment. CRC Press, Boca Raton, FL.
- Wiesner, M. R. and J. Y. Bottero (ed). 2007. Environmental Nanotechnology: application and impacts of nanomaterials. The McGraw-Hill Co, New York.
- Batley, G. E., J. K. Kirby, and M. J. McLaughlin. 2011. Fate and risks of nanomaterials in aquatic and terrestrial environments. *Accounts of Chemical Research* 46: 854-862.
- Bergeson, L. L. 2013. Sustainable nanomaterials: Emerging governance systems. *ACS Sustainable Chemistry and Engineering* 1: 724-730.
- Rico, C. M., S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, and J. L. Gardea-Teooresdey. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. *Journal of Agricultural and Food Chemistry* 59: 3485-3498.
- Weir, A, P. Westerhoff, L. Fabricius, K. Hristovski and N. von Goetz. 2012. Titanium dioxide nanoparticles in food and personal care products. *Environmental Science and Technology* 46: 2242-2250.

Journal Articles:

- 1. National Science and Technology Council, 2000. National Nanotechnology Initiative: Leading to the next industrial revolution. A report by the Interagency Working Group on Nanoscience, Engineering and Technology. Washington, D.C.
- 2. ASTM International, 2006. Designation: E 2456-06. Standard Terminology Relating to Nanotechnology.
- 3. Wang, Z.L., Y. Liu, and Z. Zhang. (Ed.). 2002. Handbook of Nanophase and Nanostructured Materials: Synthesis/ Characterization / Materials Systems and Applications I/Materials Systems and Applications II. Springer Science & Business Media.
- 4. Bakshi S. et al, 2015. Natural nanoparticles: implications for environment and human health. *Critical Reviews in Environmental Science and Technology* 45:861–904
- 5. Hartland A. et al, 2013. The Environmental Significance of Natural Nanoparticles. *Nature Education Knowledge* 4(8):7
- 6. Sharma et al. 2015. Natural inorganic nanoparticles—formation, fate, and toxicity in the environment. Chemical Society Reviews 44: 8410-8423.
- 7. Sekhon, B. S. 2014. Nanotechnology in agri-food production: an overview. *Nanotechnology, Science and Applications* 7, 31.
- 8. Mousavi, S. R., & Rezaei, M. 2011. Nanotechnology in agriculture and food production. J Appl Environ Biol Sci, 1(10), 414-419.

- 9. Gogos, A., Knauer, K., and Bucheli, T.D. 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications and research priorities. *J. Agric. Food Chem.* 60: 9871-9792.
- 10. Weiss J., P. Takhistov, and D. J. McClements. 2006. Functional materials in food nanotechnology. *J. Food Sci.* 71:R107-R116.
- 11. Habuda-Stanic M. and M. Nujic. 2015. Arsenic removal by nanoparticles: a review. Environ. Sci. Pollut. Res. 22: 8094-8123.
- 12. Kasaraneni V. R., L. A. Schifman, T. B. Boving, and V. Oyanedel-Craver. 2014. Enhancement of surface runoff quality using modified sorbents. *Sustainable Chem. & Eng.* 2: 1609-1615.
- 13. Upadhyayula et al. 2009. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. *Science of the Total Environment* 408: 1-13.
- 14. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., & Lead, J. R. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. *Environmental Toxicology and Chemistry* 27(9), 1825-1851.
- 15. Lin D et al. 2010. Fate and transport of engineered nanomaterials in the environment. Journal of Environmental Quality 39: 1896-1908.
- 16. Zhu et al. 2012. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environmental Science & Technology 46: 12391-12398.
- 17. Bergeson, L. L. 2013. Sustainable nanomaterials: emerging governance systems. ACS Sustainable Chemistry & Engineering 1: 724-730.
- 18. Rico C. M. et al. 2015. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558.
- 19. Gonzalez-Melendi, P. et al. 2008. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany 101: 187–195.
- 20. TASCIOTTI, E. et al. 2008. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature nanotechnology 3: 151-157.

COURSE CHAPTERS

Nanotechnology in Agriculture, Food and Environment

Module I Basic concepts and principles of nanotechnology

- Chapter 1 Fundamentals of Nanoscience and Nanotechnology
 - 2 Nanoscale Materials: Definition and Properties
 - 3 Manufacturing and Characterization of Nanoparticles
 - 4 Natural Nanoparticles and Their Role in Soil and Water Quality

Module II Nanotechnology Applications

5 Nanotechnology Application in Agriculture

- 6 Nanotechnology Application in Food Sciences
 7 Nanotechnology Application in the Environment

 Module III Behavior, environmental toxicology and regulations of nanoparticle
 8 Environmental Fate and Transport of Engineered Nanoparticles
 9 Environmental Toxicology of Engineered Nanoparticles
 10 Environmental Regulation of Engineered Nanomaterials

 Module IV Smart nano-delivery systems
 11 Smart Nanoscale Systems for Targeted Delivery of Drugs, Nutrients and Pesticides
- Teaching schedule*

Week	Topics covered	Lectures/reading materials/assignments
1	Introduction/ historic development and	Lecture 1/Chapter 1
	fundamentals of nanoscience and nanotechnology	Reading materials
		Assignment 1
2	Nanoscale materials: definition and properties	Lecture 2/Chapter 2
		Reading materials
		Assignment 2
3	Manufacturing and characterization of	Lecture 3/Chapter 3
	nanoparticles	Reading materials
	-	Assignment 3
4	Natural nanoparticles and their role in soil and	Lecture 4/Chapter 4
	water quality	Reading materials
5	Nanotechnology application in agriculture I & II	Lectures 5/Chapters 5
		Reading materials
		Assignment 5
6	Nanotechnology application in food sciences	Lecture 6/Chapter 6
		Reading materials
		Assignment 5
7		Spring break
8	Nanotechnology application in the environment	Lecture 7/Chapter 7
		Reading materials
		Assignment 6
9	Course review	Mid-term exam
10	Environmental fate and transport of engineered	Lecture 8/Chapter 8
	nanomaterials	Reading materials
		Assignment 7
11	Environmental toxicology of engineered	Lecture 9/Chapter 9
	nanoparticles	Reading materials
		Assignment 8
12	Environmental regulation of engineered	Lecture 10/Chapter 10
	nanomaterial	Reading materials
13	Smart Nanoscale Systems for Targeted Delivery of	Lecture 11/Chapter 11
	Drugs, Nutrients and Pesticides	Reading materials
14-15	Course review	-

GRADES AND GRADE POINTS: For information on current UF policies for assigning grade points, see https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

ABSENCES AND MAKE-UP WORK: Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.

ACADEMIC HONESTY: As a student at the University of Florida, you have committed yourself to uphold the Honor Code, which includes the following pledge: "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity." You are expected to exhibit behavior consistent with this commitment to the UF academic community, and on all work submitted for credit at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."

It is assumed that you will complete all work independently in each course unless the instructor provides explicit permission for you to collaborate on course tasks (e.g. assignments, papers, quizzes, exams). Furthermore, as part of your obligation to uphold the Honor Code, you should report any condition that facilitates academic misconduct to appropriate personnel. It is your individual responsibility to know and comply with all university policies and procedures regarding academic integrity and the Student Honor Code. Violations of the Honor Code at the University of Florida will not be tolerated. Violations will be reported to the Dean of Students Office for consideration of disciplinary action. For more information regarding the Student Honor Code, please see: http://www.dso.ufl.edu/sccr/process/student-conduct-honor-code.

SOFTWARE USE: All faculty, staff, and students of the University of Florida are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

CAMPUS RESOURCES:

Health and Wellness

U Matter, We Care:

If you or a friend is in distress, please contact umatter@ufl.edu or 352 392-1575 so that a team member can reach out to the student.

Counseling and Wellness Center:

http://www.counseling.ufl.edu/cwc/Default.aspx, 392-1575;

Sexual Assault Recovery Services (SARS) Student Health Care Center, 392-1161.

University Police Department, 392-1111 (or 9-1-1 for emergencies). http://www.police.ufl.edu/

^{*} Dates for topics or exams are subject to change.

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to <u>Learning-support@ufl.edu</u>, https://lss.at.ufl.edu/help.shtml.

University Counseling & Wellness Center, 3190 Radio Road, 352-392-1575, www.counseling.ufl.edu/cwc/
Counseling Services
Groups and Workshops
Outreach and Consultation

Self-Help Library

Wellness Coaching

U Matter We Care, www.umatter.ufl.edu/

Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/

Library Support, http://cms.uflib.ufl.edu/ask . Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. http://teachingcenter.ufl.edu/

Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers. http://writing.ufl.edu/writing-studio/

Student Complaints Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf On-Line Students Complaints: http://www.distance.ufl.edu/student-complaint-process

STUDENTS WITH DISABILITIES: The Disability Resource Center coordinates the needed accommodations of students with disabilities. This includes registering disabilities, recommending academic accommodations within the classroom, accessing special adaptive computer equipment, providing interpretation services and mediating faculty-student disability related issues. Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

ONLINE COURSE EVALUATION: Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

STUDENT COMPLAINTS: Each online distance learning program has a process for, and will make every attempt to resolve, student complaints within its academic and administrative departments at the program level. See http://distance.ufl.edu/student-complaints for more details.

The grading rubric for graduate student's final project

Components	Poor	Acceptable	Good	Excellent	Full
	(≤ 60 %)	(61-80 %)	(81-90 %)	(91-100 %)	score
6 : .:6:		Content	-1	G: 16:	10
Scientific	No obvious scientific	Scientific question is not	There is a scientific	Significant questions are	10
questions	questions to be addressed.	explicitly presented.	question clearly stated.	logically addressed.	
Hypothesis	No hypothesis.	There is hypothesis, but not	There is a well presented	Meaningful hypotheses	5
		well presented.	hypothesis.	are logically addressed.	
Methodology	No experimental design	There is experimental design,	There is experiment	The experiments are	10
	and lack of adequate	but lack of adequate	design with measurement	statistically designed with	
	methods.	methods.	methods.	adequate methods.	
Data process &	No statistical analysis of	There is statistical analysis of	The data are statistically	The data are statistically	5
statistical	the data.	the data but not sufficient.	analyzed but not well	analyzed and well	
analysis			presented.	presented.	
Results and	Interpretation of the data	The results are presented but	The results are adequately	The results are well	20
Discussion	is lacking.	not well discussed.	presented and discussed.	presented and discussed.	
		Communication	on		
Organization	No logical structure of the	The paper and presentation	The paper and	Well organized with	10
	paper and presentation.	is structured in a way but	presentation is logically	proper proportions of	
		hard to follow.	structured.	text, figures, and pictures.	
Language	Poor with many errors in	Adequate with minor errors	Written clearly without	Well written with good	10
	grammar and spelling.	in grammar and spelling	obvious errors in grammar	flow of ideas and easy to	
			and spelling	follow	
Colors &	Colors are arbitrarily	Use of some colors and	Colors and figures are	Colors and figures are well	10
figures	chosen and figures are	figures to present	used to enhance	designed to communicate	
	poorly designed.	information.	presentation.	ideas.	
Presentation	Not clear and timely	Good speech but not timely	Good speech and timely	Well presented and timely	10
Acknowledg	Minimal citation	With some citations and	Completely cited and	Well cited and	10
ment		references	acknowledged.	acknowledged with	
				journal standards	