Cover Sheet: Request 13319

ABE 4XXX Control Methods in SmartAg Systems Course

Info

<table>
<thead>
<tr>
<th>Process</th>
<th>Status</th>
<th>Submitter</th>
<th>Created</th>
<th>Updated</th>
<th>Description of request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course/New/Ugrad/Pro</td>
<td>Pending at PV - University Curriculum Committee (UCC)</td>
<td>Thomas Burks tburks@ufl.edu</td>
<td>11/6/2018 11:38:54 AM</td>
<td>2/12/2019 4:27:49 PM</td>
<td>Applying for new course for the SmartAg Certificate</td>
</tr>
</tbody>
</table>

Actions

<table>
<thead>
<tr>
<th>Step</th>
<th>Status</th>
<th>Group</th>
<th>User</th>
<th>Comment</th>
<th>Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Approved</td>
<td>ENG - Agricultural and Biological Engineering</td>
<td>Kati Migliaccio</td>
<td>No document changes</td>
<td>11/6/2018</td>
</tr>
<tr>
<td>College</td>
<td>Recycled</td>
<td>ENG - College of Engineering</td>
<td>Heidi Dublin</td>
<td>Department requested at 12/4 Curriculum Committee Meeting for this item to be tabled. Move back forward when ready.</td>
<td>12/10/2018</td>
</tr>
<tr>
<td>Department</td>
<td>Approved</td>
<td>ENG - Agricultural and Biological Engineering</td>
<td>Kati Migliaccio</td>
<td>No document changes</td>
<td>12/11/2018</td>
</tr>
<tr>
<td>College</td>
<td>Recycled</td>
<td>ENG - College of Engineering</td>
<td>Heidi Dublin</td>
<td>Tabled by Department Rep pending adjustments that need to be made. See comments: Same comments from before, no changes were made to this undergrad request. The changes from the 13320 request need to be copied over. Difference between graduate and undergraduate courses needs to be explained better. It states in the form that advanced programming projects and term projects are not needed for undergraduates. But they are in the grading table. Do they do other projects?</td>
<td>1/9/2019</td>
</tr>
<tr>
<td>Department</td>
<td>Approved</td>
<td>ENG - Agricultural and Biological Engineering</td>
<td>Kati Migliaccio</td>
<td>No document changes</td>
<td>1/24/2019</td>
</tr>
<tr>
<td>Step</td>
<td>Status</td>
<td>Group</td>
<td>User</td>
<td>Comment</td>
<td>Updated</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>College</td>
<td>Approved</td>
<td>ENG - College of Engineering</td>
<td>Heidi Dublin</td>
<td>Approved by HWCOE Curriculum Committee and at HWCOE Faculty Meeting</td>
<td>2/12/2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABE 4XXX HWCOE-Syllabus-Undergrad-Course-Spring-2020.docx</td>
<td>2/4/2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABE 5XXX HWCOE-Syllabus-Graduate-Course-Spring-2020.docx</td>
<td>2/4/2019</td>
</tr>
<tr>
<td>University Curriculum Committee</td>
<td>Pending</td>
<td>PV - University Curriculum Committee (UCC)</td>
<td></td>
<td></td>
<td>2/12/2019</td>
</tr>
<tr>
<td>Statewide Course Numbering System</td>
<td></td>
<td></td>
<td></td>
<td>No document changes</td>
<td></td>
</tr>
<tr>
<td>Office of the Registrar</td>
<td></td>
<td></td>
<td></td>
<td>No document changes</td>
<td></td>
</tr>
<tr>
<td>Student Academic Support System</td>
<td></td>
<td></td>
<td></td>
<td>No document changes</td>
<td></td>
</tr>
<tr>
<td>Catalog</td>
<td></td>
<td></td>
<td></td>
<td>No document changes</td>
<td></td>
</tr>
<tr>
<td>College Notified</td>
<td></td>
<td></td>
<td></td>
<td>No document changes</td>
<td></td>
</tr>
</tbody>
</table>
Course|New for request 13319

Info
Request: ABE 4XXX Control Methods in SmartAg Systems Course
Description of request: Applying for new course for the SmartAg Certificate
Submitter: Thomas Burks tburks@ufl.edu
Created: 2/4/2019 9:20:01 AM
Form version: 5

Responses
Recommended Prefixн ABE
Course Level 4
Number XXX
Category of Instruction Advanced
Lab Code None
Course Title Control Methods in SmartAg Systems
Transcript Title Cntrl SmartAg Systems
Degree Type Baccalaureate

Delivery Method(s) On-Campus
Co-Listing Yes
Co-Listing Explanation Graduate students and Undergraduate students will complete four programming assignments during course that will cover similar lecture concepts but the degree of difficulty will be higher for graduate students. Also, graduate students will be required to complete a term project and a term project covering more advanced programming concepts, and undergraduates will only be required to do a term paper.
Effective Term Earliest Available
Effective Year Earliest Available
Rotating Topic? No
Repeatable Credit? No

Amount of Credit 3
If variable, # min 0
If variable, # max 0
S/U Only? No
Contact Type Regularly Scheduled
Weekly Contact Hours 3

Course Description Design, analysis, simulation and programming modern control methods for applications in production agriculture, biological and food engineering, land and water resources. Students will learn theoretical concepts, application programming, and simulation techniques using classical and modern control approaches, fuzzy logic, neural networks and other intelligent learning algorithms.

Prerequisites MAP2302 Elementary Differential Equations or equivalent PHY2048 Physics with Calculus

Co-requisites EGM 3400 Dynamics or equivalent
Rationale and Placement in Curriculum This is a required key course in the new SmartAg certificate program

Course Objectives • Gain ability to design, program, and analyze control systems, which can be applied to a broad range of engineering applications relevant to SmartAg systems including, but not limited to, field production, food processing, irrigation systems, and biological systems.
• Learn theoretical concepts associated with control system design using classical control and state space approaches, along with neural networks and fuzzy logic based solutions. Theory will be reinforced through homework, programming and term projects.
• Learn how to evaluate control oriented design problems, and formulate a solution. Students will develop a formal report and present concepts to class. Students will develop team skills and
communicate ideas in written and oral format. Projects will reinforce need for ethical design practices.

Course Textbook(s) and/or Other Assigned Reading

- Modern Control Engineering

 Ogata
 2015, 5th Edition
 ISBN: 978-9332550162

- Intelligent Control Design and Matlab Simulation

 Jinkun Liu
 2018, 1st Edition
 ISBN: 978-9811052620

Weekly Schedule of Topics

Week 1. Ogata-2: The Laplace Transform (Overview of Matlab)

Week 2. Ogata-3: Mathematical Modeling of Dynamic Systems

Week 3. Ogata-4: Mathematical Modeling of Fluid Systems

Week 4. Ogata-5: Transient and Steady State Response with Matlab

Week 5. Ogata-8: Frequency Response Analysis with Matlab

Week 6. Ogata-10: PID Control

Week 7. Ogata-11: Analysis of Control Systems in State Space with Matlab

Week 8. Ogata-12: Design of Control Systems in State Space with Matlab, (Mid-term Exam)

Week 9. Liu-3-4: Foundations of Fuzzy Mathematics/Fuzzy Logic Control

Week 10. Liu-5: Fuzzy Modeling and Control with Matlab

Week 11. Liu-6: Adaptive Fuzzy Control

Week 12. Liu-7: Neural Networks with Matlab

Week 13. Liu-8: Adaptive Neural Network Control;

Week 14. Liu-9: Discrete and Sliding Mode RBF Neural Networks

Week 15. Liu-10: Intelligent Search Algorithms

Week 16. Final Exam

Links and Policies

Excused absences must be consistent with university policies in the undergraduate catalog and require appropriate documentation.

(https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx)

More information on UF grading policy may be found at:

https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx

Students Requiring Accommodations

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation

Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu/evals. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open.

Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

University Honesty Policy

UF students are bound by The Honor Pledge which states, “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code (https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

Software Use

All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal
Student Privacy
There are federal laws protecting your privacy with regards to grades earned in courses and on individual assignments. For more information, please see: http://registrar.ufl.edu/catalog0910/policies/regulationferpa.html

Campus Resources:

Health and Wellness

U Matter, We Care:
Your well-being is important to the University of Florida. The U Matter, We Care initiative is committed to creating a culture of care on our campus by encouraging members of our community to look out for one another and to reach out for help if a member of our community is in need. If you or a friend is in distress, please contact umatter@ufl.edu so that the U Matter, We Care Team can reach out to the student in distress. A nighttime and weekend crisis counselor is available by phone at 352-392-1575. The U Matter, We Care Team can help connect students to the many other helping resources available including, but not limited to, Victim Advocates, Housing staff, and the Counseling and Wellness Center. Please remember that asking for help is a sign of strength. In case of emergency, call 9-1-1.

Counseling and Wellness Center: http://www.counseling.ufl.edu/cwc, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.

Sexual Assault Recovery Services (SARS)
Student Health Care Center, 392-1161.

University Police Department at 392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/.

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml.

Library Support, http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/.

Grading Scheme
Evaluation of Grades

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Total Points</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Sets (14)</td>
<td>100 each</td>
<td>20%</td>
</tr>
</tbody>
</table>
Programming/Simulation (4) 100 each 20%
Midterm Exam 100 25%
Final Exam 100 25%
Term Paper 100 10%
100%

Grading Policy

<table>
<thead>
<tr>
<th>Percent Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.4 - 100</td>
<td>A 4.00</td>
</tr>
<tr>
<td>90.0 - 93.3</td>
<td>A- 3.67</td>
</tr>
<tr>
<td>86.7 - 89.9</td>
<td>B+ 3.33</td>
</tr>
<tr>
<td>83.4 - 86.6</td>
<td>B 3.00</td>
</tr>
<tr>
<td>80.0 - 83.3</td>
<td>B- 2.67</td>
</tr>
<tr>
<td>76.7 - 79.9</td>
<td>C+ 2.33</td>
</tr>
<tr>
<td>73.4 - 76.6</td>
<td>C 2.00</td>
</tr>
<tr>
<td>70.0 - 73.3</td>
<td>C- 1.67</td>
</tr>
<tr>
<td>66.7 - 69.9</td>
<td>D+ 1.33</td>
</tr>
<tr>
<td>63.4 - 66.6</td>
<td>D 1.00</td>
</tr>
<tr>
<td>60.0 - 63.3</td>
<td>D- 0.67</td>
</tr>
<tr>
<td>0 - 59.9</td>
<td>E 0.00</td>
</tr>
</tbody>
</table>

Instructor(s) Thomas F Burks
Control Methods in SmartAg Systems
ABE 4xxx Section 1234

Credits: 3

Class Periods: M and W, 8th and 9th Period, from 3:00PM to 4:55 PM
Location: 211 Rogers Hall
Academic Term: Spring 2020

Instructor:
Name: Tom Burks
Email Address: tburks@ufl.edu
Office Phone: (352) 392-1864, x225
Office Hours: By Appointment, Rogers Hall room 225

Teaching Assistants:
Please contact through the Canvas website
- TBD, Name of TA, email address, office location, office hours

Course Description
Design, analysis, simulation and programming modern control methods for applications in production agriculture, biological and food engineering, land and water resources. Students will learn theoretical concepts, application programming, and simulation techniques using classical and modern control approaches, fuzzy logic, neural networks and other intelligent learning algorithms. *Offered each spring*

Course Pre-Requisites
- MAP2302 Elementary Differential Equations or equivalent
- PHY2048 Physics with Calculus

Course Co-Requisites
- EGM 3400 Dynamics or equivalent

Course Recommendation
- Senior level engineering undergraduate student
- Fluent in general programming language such as C, C++, or Visual Basic, and MATLAB

Course Objectives
- Gain ability to design, program, and analyze control systems, which can be applied to a broad range of engineering applications relevant to SmartAg systems including, but not limited to, field production, food processing, irrigation systems, and biological systems.
- Learn theoretical concepts associated with control system design using classical control and state space approaches, along with neural networks and fuzzy logic based solutions. Theory will be reinforced through homework, programming and term projects.
- Learn how to evaluate control oriented design problems, and formulate a solution. Students will develop a formal report and present concepts to class. Students will develop team skills and communicate ideas in written and oral format. Projects will reinforce need for ethical design practices.

Materials and Supply Fees
Not Applicable

Professional Component (ABET):
This course contributes 3 credit hours toward meeting the minimum 48 credit hours of Engineering Topics in the basic-level curriculum for the Bachelor of Science Degree in Biological Engineering. Although not a required class, it is an engineering elective.
Relation to Program Outcomes (ABET):

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Coverage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics</td>
<td>High</td>
</tr>
<tr>
<td>2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors</td>
<td>High</td>
</tr>
<tr>
<td>3. an ability to communicate effectively with a range of audiences</td>
<td>Low</td>
</tr>
<tr>
<td>4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts</td>
<td>Low</td>
</tr>
<tr>
<td>5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives</td>
<td>Medium</td>
</tr>
<tr>
<td>6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions</td>
<td>Low</td>
</tr>
<tr>
<td>7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies</td>
<td>Low</td>
</tr>
</tbody>
</table>

*Coverage is given as high, medium, or low. An empty box indicates that this outcome is not part of the course.

Required Textbooks and Software
- Modern Control Engineering
- Ogata
 - 2015, 5th Edition
 - ISBN: 978-9332550162

Recommended Materials
- Intelligent Control Design and Matlab Simulation
- Jinkun Liu
 - 2018, 1st Edition
 - ISBN: 978-9811052620

Course Schedule
- Week 1. Ogata-2: The Laplace Transform (Overview of Matlab)
- Week 2. Ogata-3: Mathematical Modeling of Dynamic Systems
- Week 3. Ogata-4: Mathematical Modeling of Fluid Systems
- Week 4. Ogata-5: Transient and Steady State Response with Matlab
- Week 5. Ogata-8: Frequency Response Analysis with Matlab
- Week 6. Ogata-10: PID Control
- Week 7. Ogata-11: Analysis of Control Systems in State Space with Matlab
- Week 8. Ogata-12: Design of Control Systems in State Space with Matlab, (Mid-term Exam)
- Week 9. Liu-3-4: Foundations of Fuzzy Mathematics/Fuzzy Logic Control
- Week 10. Liu-5: Fuzzy Modeling and Control with Matlab
- Week 11. Liu-6: Adaptive Fuzzy Control
- Week 12. Liu-7: Neural Networks with Matlab
- Week 13. Liu-8: Adaptive Neural Network Control;
- Week 14. Liu-9: Discrete and Sliding Mode RBF Neural Networks
- Week 15. Liu-10: Intelligent Search Algorithms
- Week 16. Final Exam
Attendance Policy, Class Expectations, and Make-Up Policy

a) There will be approximately one homework assignment per week, due Monday before start of class. You may discuss homework with your classmates, but you may not copy verbatim from another student. Cheating will affect all parties involved. A scanned copy of homework will be turned in online in canvas with a one-day grace period at full points, zero percentage after that.
b) Programming and simulation reports will be assigned on an approximate two to three week basis, examples will be used that are relevant to lecture material. All relevant project material, code, plots and write up will be submitted on line through canvas in a combined pdf file. While a copy of operational coding files will be emailed to instructor in native format, such as Matlab m-files that are ready to execute. There will be a one-day grace period with full points, and zero percentage after that.
c) The term paper will more fully expose the students to the material covered in the class as applied to SmartAg applications. Students should choose topics that are relevant to their area of interest, and will be responsible to write a literature survey covering the selected topic. Assignments will be turned in online through canvas with a one-day grace period at full points, and zero percentage after that.
d) Two exams, a mid-term and a final will be scheduled. Exams will be one-hour in duration, and closed book, though you will be allowed 1 page of notes on both front and back of an 8 in x 11.5 in sheet of paper. Cell phones, tablets, and laptops not permitted during exams.
e) Excused absences must be consistent with university policies in the undergraduate catalog and require appropriate documentation. (https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx)
f) Missed homework or projects may be submitted late at any time, with a 50% penalty, if beyond grace period. Unless there is a previously approved absence as stated in item (e) above, in which case full points may be received based on performance.

Evaluation of Grades

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Total Points</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Sets (14)</td>
<td>100 each</td>
<td>20%</td>
</tr>
<tr>
<td>Programming/Simulation (4)</td>
<td>100 each</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>100</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>100</td>
<td>25%</td>
</tr>
<tr>
<td>Term Paper</td>
<td>100</td>
<td>10%</td>
</tr>
</tbody>
</table>

Grading Policy

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.4 - 100</td>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>90.0 - 93.3</td>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>86.7 - 89.9</td>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>83.4 - 86.6</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>80.0 - 83.3</td>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>76.7 - 79.9</td>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>73.4 - 76.6</td>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>70.0 - 73.3</td>
<td>C-</td>
<td>1.67</td>
</tr>
<tr>
<td>66.7 - 69.9</td>
<td>D+</td>
<td>1.33</td>
</tr>
<tr>
<td>63.4 - 66.6</td>
<td>D</td>
<td>1.00</td>
</tr>
<tr>
<td>60.0 - 63.3</td>
<td>D-</td>
<td>0.67</td>
</tr>
<tr>
<td>0 - 59.9</td>
<td>E</td>
<td>0.00</td>
</tr>
</tbody>
</table>

More information on UF grading policy may be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/grades.aspx
Students Requiring Accommodations
Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation
Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu/evals. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

University Honesty Policy
UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment." The Honor Code (https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

Software Use
All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

Student Privacy
There are federal laws protecting your privacy with regards to grades earned in courses and on individual assignments. For more information, please see: http://registrar.ufl.edu/catalog0910/policies/regulationferpa.html
Campus Resources:

Health and Wellness

U Matter, We Care:
Your well-being is important to the University of Florida. The U Matter, We Care initiative is committed to creating a culture of care on our campus by encouraging members of our community to look out for one another and to reach out for help if a member of our community is in need. If you or a friend is in distress, please contact umatter@ufl.edu so that the U Matter, We Care Team can reach out to the student in distress. A nighttime and weekend crisis counselor is available by phone at 352-392-1575. The U Matter, We Care Team can help connect students to the many other helping resources available including, but not limited to, Victim Advocates, Housing staff, and the Counseling and Wellness Center. Please remember that asking for help is a sign of strength. In case of emergency, call 9-1-1.

Counseling and Wellness Center: http://www.counseling.ufl.edu/cwc, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.

Sexual Assault Recovery Services (SARS)
Student Health Care Center, 392-1161.

University Police Department at 392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/.

Academic Resources

E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml.

Library Support, http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/.

Student Complaints Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf

Control Methods in SmartAg Systems
ABE 5xxx Section 1234
Credits: 3

Class Periods: M and W, 8th and 9th Period, from 3:00PM to 4:55 PM
Location: 211 Rogers Hall
Academic Term: Spring 2020

Instructor:
Name: Tom Burks
Email Address: tburks@ufl.edu
Office Phone: (352) 392-1864, x225
Office Hours: By Appointment, Rogers Hall room 225

Teaching Assistants:
Please contact through the Canvas website
 • TBD, Name of TA, email address, office location, office hours

Course Description
Design, analysis, simulation and programming modern control methods for applications in production agriculture, biological and food engineering, land and water resources. Students will learn theoretical concepts, application programming, and simulation techniques using classical and modern control approaches, fuzzy logic, neural networks and other intelligent learning algorithms. Offered each spring

Course Pre-Requisites
• Elementary Differential Equations or equivalent
• Physics with Calculus
• Dynamics or equivalent

Course Recommendation
• Engineering graduate student
• Fluent in general programming language such as C, C++, or Visual Basic, and MATLAB

Course Objectives
• Gain ability to design, program, and analyze control systems, which can be applied to a broad range of engineering applications relevant to SmartAg systems including, but not limited to, field production, food processing, irrigation systems, and biological systems.
• Learn theoretical concepts associated with control system design using classical control and state space approaches, along with neural networks and fuzzy logic based solutions. Theory will be reinforced through homework, programming and term projects.
• Learn how to evaluate control oriented design problems, and formulate a solution. Students will develop a formal report and present concepts to class. Students will develop team skills and communicate ideas in written and oral format. Projects will reinforce need for ethical design practices.

Materials and Supply Fees
Not Applicable

Required Textbooks and Software
• Modern Control Engineering
 • Ogata
 • 2015, 5th Edition
 • ISBN: 978-9332550162

Recommended Materials
Course Title, Prefix, and Number

Intelligent Control Design and Matlab Simulation
Jinkun Liu
2018, 1st Edition
ISBN: 978-9811052620

Course Schedule

- Week 1. Ogata-2: The Laplace Transform (Overview of Matlab)
- Week 2. Ogata-3: Mathematical Modeling of Dynamic Systems
- Week 3. Ogata-4: Mathematical Modeling of Fluid Systems
- Week 4. Ogata-5: Transient and Steady State Response with Matlab
- Week 5. Ogata-8: Frequency Response Analysis with Matlab
- Week 6. Ogata-10: PID Control
- Week 7. Ogata-11: Analysis of Control Systems in State Space with Matlab
- Week 8. Ogata-12: Design of Control Systems in State Space with Matlab, (Mid-term Exam)
- Week 9. Liu-3-4: Foundations of Fuzzy Mathematics/Fuzzy Logic Control
- Week 10. Liu-5: Fuzzy Modeling and Control with Matlab
- Week 11. Liu-6: Adaptive Fuzzy Control
- Week 12. Liu-7: Neural Networks with Matlab
- Week 13. Liu-8: Adaptive Neural Network Control;
- Week 14. Liu-9: Discrete and Sliding Mode RBF Neural Networks
- Week 15. Liu-10: Intelligent Search Algorithms
- Week 16. Liu-11: Final Exam

Attendance Policy, Class Expectations, and Make-Up Policy

a) There will be approximately one homework assignment per week, due Monday before start of class. You may discuss homework with your classmates, but you may not copy verbatim from another student. Cheating will affect all parties involved. A scanned copy of homework will be turned in online in canvas with a one-day grace period at full points, zero percentage after that.

b) Programming and simulation reports will be assigned on an approximate two to three week basis, examples will be used that are relevant to lecture material. All relevant project material, code, plots and write up will be submitted on line through canvas in a combined pdf file. While a copy of operational coding files will be emailed to instructor in native format, such as Matlab m-files that are ready to execute. There will be a one-day grace period with full points, and zero percentage after that.

c) The term paper will more fully expose the students to the material covered in the class as applied to SmartAg applications. Students will choose topics that are relevant to their area of interest and will be responsible to conduct a literature review of their topic and compose a paper reporting on said technology and how it is relevant to this class. Proper literary methods will be used to notate sources according to the assignment description. Assignments will be turned in online through canvas with a one-day grace period at full points, and zero percentage after that.

d) The term project will be a more comprehensive programming assignment, only required of graduate students, that will more fully expose the students to the material covered in the class. The scope of the term project will be defined by instructor along with appropriate data sets and expected outcomes. Students will be responsible to design/conceive a SmartAg solution showing simulation program solutions to validate concept. Assignments will be turned in online through canvas with a one-day grace period at full points, and zero percentage after that.

e) Two exams, a mid-term and a final will be scheduled. Exams will be one-hour in duration, and closed book, though you will be allowed 1 page of notes on both front and back of an 8 in x 11.5 in sheet of paper. Cell phones, tablets, and laptops not permitted during exams.

f) Excused absences must be consistent with university policies in the undergraduate catalog and require appropriate documentation. [https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx]

g) Missed homework or projects may be submitted late at any time, with a 50% penalty, if beyond grace period. Unless there is a previously approved absence as stated in item (e) above, in which case full points may be received based on performance.
Evaluation of Grades

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Total Points</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Sets (14)</td>
<td>100 each</td>
<td>20%</td>
</tr>
<tr>
<td>Programming/Simulation (4)</td>
<td>100 each</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>100</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>100</td>
<td>20%</td>
</tr>
<tr>
<td>Term Project</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>Term Paper</td>
<td>100</td>
<td>10%</td>
</tr>
</tbody>
</table>

Grading Policy

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.4 - 100</td>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>90.0 - 93.3</td>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>86.7 - 89.9</td>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>83.4 - 86.6</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>80.0 - 83.3</td>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>76.7 - 79.9</td>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>73.4 - 76.6</td>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>70.0 - 73.3</td>
<td>C-</td>
<td>1.67</td>
</tr>
<tr>
<td>66.7 - 69.9</td>
<td>D+</td>
<td>1.33</td>
</tr>
<tr>
<td>63.4 - 66.6</td>
<td>D</td>
<td>1.00</td>
</tr>
<tr>
<td>60.0 - 63.3</td>
<td>D-</td>
<td>0.67</td>
</tr>
<tr>
<td>0 - 59.9</td>
<td>E</td>
<td>0.00</td>
</tr>
</tbody>
</table>

More information on UF grading policy may be found at: http://gradcatalog.ufl.edu/content.php?catoid=10&navoid=2020#grades

Students Requiring Accommodations

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation

Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu/evals. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

University Honesty Policy

UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code (https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

Course Title, Prefix, and Number

Course Instructor and Academic Term
Software Use
All faculty, staff, and students of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

Student Privacy
There are federal laws protecting your privacy with regards to grades earned in courses and on individual assignments. For more information, please see: http://registrar.ufl.edu/catalog0910/policies/regulationferpa.html

Campus Resources:

Health and Wellness

<table>
<thead>
<tr>
<th>U Matter, We Care:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your well-being is important to the University of Florida. The U Matter, We Care initiative is committed to creating a culture of care on our campus by encouraging members of our community to look out for one another and to reach out for help if a member of our community is in need. If you or a friend is in distress, please contact umatter@ufl.edu so that the U Matter, We Care Team can reach out to the student in distress. A nighttime and weekend crisis counselor is available by phone at 352-392-1575. The U Matter, We Care Team can help connect students to the many other helping resources available including, but not limited to, Victim Advocates, Housing staff, and the Counseling and Wellness Center. Please remember that asking for help is a sign of strength. In case of emergency, call 9-1-1.</td>
</tr>
</tbody>
</table>

| Counseling and Wellness Center: | http://www.counseling.ufl.edu/cwc, and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies. |

<table>
<thead>
<tr>
<th>Sexual Assault Recovery Services (SARS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Health Care Center, 392-1161.</td>
</tr>
</tbody>
</table>

| University Police Department | at 392-1111 (or 9-1-1 for emergencies), or http://www.police.ufl.edu/. |
Academic Resources

<table>
<thead>
<tr>
<th>E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu.</th>
<th>https://lss.at.ufl.edu/help.shtml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Career Resource Center, Reitz Union, 392-1601. Career assistance and counseling.</td>
<td>https://www.crc.ufl.edu/</td>
</tr>
<tr>
<td>Library Support, http://cms.uflib.ufl.edu/ask. Various ways to receive assistance with respect to using the libraries or finding resources.</td>
<td></td>
</tr>
<tr>
<td>Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring.</td>
<td>https://teachingcenter.ufl.edu/</td>
</tr>
<tr>
<td>Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers.</td>
<td>https://writing.ufl.edu/writing-studio/</td>
</tr>
<tr>
<td>Student Complaints Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf</td>
<td></td>
</tr>
</tbody>
</table>